
_ LIBRARY [^gjjgg

CONTRACTOR REPORT ARPAD-CR-80001

DISTRIBUTED SENSOR SYSTEMS AND

ELECTROMECHANICAL ANALOG FACILITY

R. A. VOL2
S. L. BEMENT
R. JUNGCLAS

T. ROSENBAUM
E. J. SESEK

J. WENSTRAND
S. CAGLIASTRO

A. ZEMON
VERCHRON SYSTEMS, INC.

SALINE, MICHIGAN

P. BECK
ARRADCOM, PROJECT ENGINEER

JANUARY 1980

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
PRODUCT ASSURANCE DIRECTORATE

DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views, cpinions, and/or findings contained
in this report are those of the author (s) and
should not be construed as an official Depart-
ment of the Army position, policy or decision,
unless so designated by other documentation.

Destroy this report when no longer needed. Do
not return to the originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dam Entered)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER

Contractor Report ARPAD-CR-80Q01

2. GOVT ACCESSION NO

«. TITLE fand Su6((tle)

DISTRIBUTED SENSOR SYSTEMS AND ELECTRO-
MECHANICAL ANALOG FACILITY

7. AUTHORO)

R.A.Volz, S.L. BeMent, R.Jungclas, T.Rosenbaum,
E.J.Sesek, J.Wenstrand, S.Cagliastro, A.Zemon,
VerChron Systems, Inc., P.Beck, ARRADCOM

9. PERFORMING ORGANIZATION NAME AND ADDRESS

VerChron Systems
325 Tamarack Drive
Saline, MI 48176

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

Final
5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERC")

DAAG29-76-D-0100

It. CONTROLLING OFFICE NAME AND ADDRESS

ARRADCOM, TSD
STINFO (DRDAR-TSS)
Dover, NJ 07801

14. MONITORING AGENCY NAME 4 ADDRESSf//tH"or«n(from Controltlnt Office)

ARRADCOM, PAD
SASD (DRDAR-QAA)
Dover, NJ 07801

10. PROGRAM ELEMENT, PROJECT, TASK
AREA ft WORK UNIT NUMBERS

Materials Testing
Technology Program

12. REPORT DATE

January 1980
13. NUMBER OF PAGES

502
IS. SECURITY CLASS, (of thle report)

Unclassified
ISa. DECLASSIFI CATION/DOWN GRADING

SCHEDULE

._
IS. DISTRIBUTION STATEMENT (of thfa Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, If different from Report)

IB. SUPPLEMENTARY NOTES

KEY WORDS (Continue on reveree aide If neceaaary and Identify by block number)

Distributed sensor systems
Real time computer applications
Software validation
Software test bed

Distributed computing system
Interprocessor communications
Concurrent operations
Hierarchical computer systems

20. AOSTBACT (Cootlmie ma reveree able tt namnuiT ami Identlfr by block number)

Distributed sensor systems are key ingredients in many real world applica-
tions. Specific instances abound both in industrial and military environments,
e.g., the monitoring (and possibly control) of manufacturing operations, or the
dispersion of various types of sensors to detect enemy movements. There are
two major areas of study in distributed sensors: the design and development of
the sensors themselves, and the logical use of such sensors. This report is

(continued)

DD^STTSMTS EDITIOM OF * MOV SS IS OBSOLETE
UNCLASSIFIED

SECURITY CLASStFICATtON OF THIS PAGE flTlMn Data Entered)

uacuasmBD
SECURITY CLASSIFICATION OF THIS PAOEfWhan Dmtm Entmnd)

20. ABSTRACT (Continued)

directed toward mechanisms to study the latter. Some examples of the latter,
explained in detail, are based on CICE/ECE/IOE 469, a course in Real Time
Computing Systems developed at the University of Michigan, Ann Arbor. Both
student and faculty critiques of the electromechanical analog facility used
in the program are included.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfHTien Data Enlared;

TABLE OF CONTENTS

1. Introduction 1
1.1. Distributad Sensor Problems 1
1.2. Sensor System Analog 2

1.2.1. Computer Controlled Train 3
1.3. Real Time Computer Applications Laboratory 4
1.4. Organization Of Report 5

2. Overview Of Facilities 6
2.1. Laboratory Development 6
2.2. Overview Of Operating Environment 7
2.3. Overview Of Hardware 8
2.4. Overview Of Software ; 10

3. Logical View Of Facilities 11
3.1. A/D And D/A Converters 11

3.1.1. Logical Interface 11
3.2. Train Facilities 12

3.2.1. Throttle Sensors 12
3.2.1.1. Logical Interface 13

3.2.2. Photocell Sensors 14
3.2.3. Track Control 14

3.2.3.1. Logical Interface 15
3.2.4. Switch Control 16

3.2.4.1. Logical Interface 16
3.3. Software Control Of Multiple Trains 17

3.3.1. Throttle Interrupt 17
3.3.2. Photocell Interrupt 18

3.3.2.1. Simple Track Junction 18
3.3.2.2. Switch Entrance—Variation 1 19
3.3.2.3. Switch Control—Variation 2 20
3.3.2.4. Crossover 21
3.3.2.5. Loop Control 21
3.3.2.6. Multiple Train Considerations 24

3.3.3. Data Structures 25

4. Physical Description Of Hardware Facilities 27
4.1. A/D And D/A Conversion Facilities 27
4.2. Train Facilities 28

4.2.1. Sensor System 28
4.2.1.1. Throttle Sensor 28
4.2.1.2. Photocell Operation 30

4.2.2. Control System 33

4.2.2.1. Track Speed Controller 33
4.2.2.2. Switch Controller I35

4.3. Other Facilities 37
4.3.1. Servo Systems '.'.37
4.3.2. Analog Computers 37
4.3.3. Data Acquisition System 38

5. Description Of Software Support Facilities 39
5.1. OSWIT - Operating System With Trains 39

5.1.1. Introduction 39
5.1.2. OSWIT Command Language ..40'
5.1.3. OSWIT File System And Utility Programs ...40
5.1.4. OSWIT Support Functions 41
5.1.5. MTS - OSWIT Communications 41
5.1.6. Real Time Operations 41

5.1.6.1. Tasking 42
5.1.6.2. I/O And Interrupt Structure 42

5.2. CRASH - Compiler For Real Time Applications
SHop 43
5.2.1. Introduction 43
5.2.2. Procedures 44
5.2.3. Data Types And Structures 45
5.2.4. Run-time Variable Checking 48
5.2.5. Storage Allocation 48
5.2.6. Arithmetic And Logical Operations 49
5.2.7. Control Constructs 50
5.2.3. Tasking And Timing 52
5-2.9. Interrupts And Special Processing

Conditions ^4
5.2.10. I/O Statements '.'.55
5.2.11. Predefined Functions And Subroutines 57
5.2.12. CRASH Summary 57

6. Instructional Application Of Facility 58
6.1. Use Of Facility 53

6.1.1. Course Objectives And Material 58
6.1.2. Standard Projects 58

6.1.2.1. Project 1. String Reverser 58
6.1.2.2. Project 2. Data Acquisition 59
6.1.2.3. Project 3. Servo Controller 59
6.1.2.4. Project 4. Electric Train Control 59

6.1.3. Independent Study Projects 60
6.2. Reaction To Use Of Facility 62

6.2.1. Instructor's View (SLB) 63
6.2.1.1. Facilities Problems 64
6.2.1.2. Curricular Problems 65\
6.2.1.3. Textbook Problem 66
6.2.1.4. Conclusion 66

6.2.2. Studenfs View 67
6.2.2.1. View 1 - - Jack Wenstrand 67
6.2.2.2. View 2 - - Richard Jungcias 71

6.2.2.3. View 3 - - Terry Rosenbaum 71

7. Speculation On Other Applications 76,
7.1. Software Validation 76

7.1.1. Software Engineering 76
7.1.2. Possible Areas Of Train Utility 78
7.1.3. Program To Train Coupling 79
7.1.4. Potential Logical Relations Between

Programs And A Train System 79
7.1.4.1. Control Flow 80
7.1.4.2. Sequential Code Block 80
7.1.4.3. Do Loops 8 0
7.1.4.4. Tf...Then...Else 82
7.1.4.5. Go To 83
7.1.4.6. Procedure Calls 83
7.1.4.7. Interrupts 84
7.1.4.8. Operations 84

7.1.5. Potential Program Train Coupling 86
7.1.5.1. Train Primitive , 86
7.1.5.2. Software Simulation 87
7.1.5.3. Compiler Generated Calls 88
7.1.5.4. User Inserted Calls 88

7.1.6. Limitations 89
7.2. Data And Process Flow 90

7.2.1. Concept Of Operation 90.
7.2.2. Implementation Considerations 92
7.2.3. Discussion 93

7.3. Modeling Distributed Sensor Systems 94

Appendix A: OSWIT Manual 97

Appendix B: CRASH Users Manual 307

Appendix C: Train Layout 455

Appendix D: Circuits For Hardware 458

Appendix E: Detailed Course Outline 459

Appendix F: Laboratory Project Statements 462

Appendix G : Bibliography -g.

Distribution List ,8g

1. INTRODUCTION

1.1 Distributed Sensor Problems

Distributed sensor systems are key ingredients in many real
world applications. Specific instances abound both in industrial
and military environments, e.g., the monitoring (and possibly
control) of manufacturing operations, or the dispersion of
various types of sensors to detect enemy movements. There are
two major areas of study in distributed sensors: the design and
development of the sensors themselves, and the logical use of
such sensors. This report is directed toward mechanisms to study
the latter.

Although a wide variety of sensors and applications exist,
there are a number of basic problems common to most systems.
First, a sensor only detects an event and/or indicates a piece
of information. Accordingly, our model of a sensor will be a
generator of a piece of data. There must be one or more
observers (human or machine) to record and use that information,
and in many instances there may also be some aspect of control
in the use of the sensor (e.g., when to take a sample, or reset
instrumentation after an event detection). Our sensor model then
is a data generating device which can operate either
asynchronously upon some event occurrence or upon the command of
some observer. Our sensor model may include a control input from
the observer.

In distributed sensor systems the overall system
architecture, or structure, is an important issue. This problem
includes not only the assignment of a sensor to an observer, but
the interconnection between observers and direction of data flow
as well. Indeed, some observers may operate on data received
from the sensor before passing it on to other observers. Figure
1 illustrates a hierarchical interconnection system; systems of
this type are very common and arise naturally in many
organizations in which the observers are human. There are,
however, many other forms of sensor system structures.

Another important issue is the concurrency of data arrival.
It may occur either at the first order observer level (the
observers actually observing the sensors) or at any higher level
of observer interconnection. Various hardware and software
arbitration schemes can be developed to deal with these.

There is also the issue of the action to be taken by each
observer upon receiving a piece of data from a sensor or lower
level observer. In a simple monitoring system the observer may
merely aggregate and record the data received, while in others,
e.g., an automated assembly line, there may be a complex
sequence of actions undertaken, based upon the data, to effect
the individual operations being monitored and controlled. The
specific actions to be undertaken are highly application

dependent, and not necessarily part of the sensor system (though
they are clearly closely related). For purposes of this
analysis, specific actions will not be of concern. Rather, the
opportunity to perform actions in a timely fashion will be
considered.

Hierarchical model of distributed sensor system. Arrows denote
permissible direction of data flow. Si are sensors and Oi are
observers.

Figure 1.

Finally, there is the issue of timing considerations. In
many distributed sensor systems there are either time critical
observations to be made (to avoid useless data) or time critical
actions (e.g., remove a part from a conveyer before it falls off
the end or rams another device). The concept of "real time"
operation is then critical to a large number of distributed
sensor systems.

1•2 Sensor System Analog

In the study of any complex real system it is often
difficult, too costly, or impossible to have the actual system
available for study. Rather, the analysis and design generally
proceed through several phases of development using mathematical
and simulation techniques. Often, preliminary work is done using

mathematical techniques. However, in large complex systems, the
mathematics of analysis and design often become computationally
intractable. In such cases the use of simulation is quite
common. Simulation is also often useful for testing ideas or
trial designs without the expense or risk of using the actual
system.

One form of simulation is the construction of a device with
characteristics similar to the system being studied, but being
much less costly, dangerous or difficult to use. Simulation

The simulator, or analog, must have certain characteristics
in order to be useful for simulation. Most importantly, it must
be capable of representing the actual system (i.e., there must
be a mapping between the analog and the actual system).
Secondly, it must have some quality which makes it more
desirable to work with than the actual system, e.g., less
costly, less dangerous, smaller, or easier visualization of
system behavior. In our view of distributed sensors we desire
the analog to possess the following properties:

1. sensors capable of being activated by external events
and notifying the corresponding observer that an event
has occurred.

2. a mechanism for observer actions, based upon the event
occurrence, in "real time".

3. a mechanism for emulating various queuing strategies
for concurrent events.

4. capability of simulating hierarchical levels of
observer activity.

1»2.1 Computer Controlled Train

A computer controlled N-gauge model railroad is the
specific analog used in this study. The track layout is divided
into a number of track sections, each separately under computer
control. Each switch position may also be controlled by the
computer. The model train system is itself a distributed sensor
system capable of representing a broad class of such systems. A
substantial number of train sensors are distributed around the
train layout and several input "throttles" allow users to enter
and control the desired train activity. The train sensors
provide event data (interrupt, state and location) and the
throttles provide analog input data (via A/D converter).

Any system may have its sensors divided into two
categories; those that provide event information and those that
provide analog data. Each of these categories may be easily
mapped onto the train and throttle sensors. As each sensor in
the train system provides identification information along with
any data sent to the computer (observer), it is clearly possible
to associate separate actions with each sensor represented by
the system. The simulated action would typically be either
printed on a computer terminal or recorded on the disk system.
Real actions that cause the train to move around the layout
underlie these simulated actions.

The sensor interrupts are buffered one level in hardware
which allows the computer sufficient time to effect various
queuing algorithms for concurrent events. Moreover, the software
environment for the system embraces multiple real time tasks.
This in turn facilitates the simulation of real time operations.

The computer controlled train system is but one of the
facilities in the Real Time Computer Applications Laboratory.
Other facilities involve acquisition and computer control
applications. It is also possible to represent multilevel
observer systems by interconnecting the computers.

1.3 Real Time Computer Applications Laboratory The Real Time
Computer Applications Laboratory was established in 1976 to
permit study and instruction on a wide variety of applications
in which the computer is but one component. Distributed sensor
problems clearly fall in this category and the broader
facilities of the laboratory are pertinent to their study.

The development of the laboratory involved the creation of
an environment for learning that encompassed both hardware and
software considerations. The hardware present in the laboratory
includes typical physical hardware to represent a broad set of
real situations which could be encountered, and a set of analog
computers which may be used to simulate a broad variety of
systems dynamics.

1. Concurrent operations (e.g., concurrent I/O and CPU
utilization)

2. event timing control for real time operations

3. recognition of asynchronous events

4. multiple tasks including the handling of priorities

5. interprocessor communication

In addition a specially designed higher level language addresses
many of these same problems: multiple tasks, priorities,
overlapped I/O, and specialized data types.

The laboratory context of the computer controlled train
system is important to its full utilization. Accordingly the
facilities of the laboratory will be discussed in some detail.

1'^ Organization of Report

The remainder of this report will discuss in detail the
facilities of the Real Time Computer Applications Laboratory and
its applications to various problems. The next chapter will
contain a brief discussion on the development of the laboratory
and an overview of the system facilities. The third chapter will
contain a logical view of the operation of the facilities.
Chapters 4 and 5 describe both the hardware and software support
of the laboratory in some detail. Chapters 6 and 7 will discuss
the application of the facilities. Chapter 5 will concentrate on
the instructional use of the facility and Chapter 7 will
consider other applications (such as distributed sensors).
Finally the several appendices contain various operating manuals
for the facilities and hardware circuits utilized.

2. OVERVIEW OF FACILITIES

2.1 Laboratory Development

In 1975 the College of Engineering at The University of
Michigan recognized that an educational void existed in a
certain aspect of computer and computer control activities,
namely the use of computers in real time applications. As a
result, a proposal was funded jointly with the National Science
Foundation to acquire equipment to allow studies in these areas.
The present real time computer applications laboratory is the
result of that effort.

The first equipment was received in January, 1976. The
facility was keyed around the newly introduced LSI-11
microcomputer from Digital Equipment Corporation. At that time
DEC had very little software support available for the LSI-11
and none suitable for the real time applications envisioned for
the laboratory. As a result it was decided that it would be both
instructive and useful to develop the major software facilities
needed for the laboratories in-house. We felt that we could
achieve the needed software support in roughly the same time
frame as the vendor and that in the interim we would have
prototypes available for use. Moreover it was felt that the
experience gained by these developments would have academic
merit.

A variety of sources were used for the labor to develop the
laboratory. A large number of independent student study projects
were carried out to develop the specific aspects of the
facility. An advanced class project in compiler writing was used
to develop the basics of the higher level language. A small
amount of paid assistance was used along with construction help
from departmental technicians. The principal direction for the
activity was provided by Professor Richard Volz. The development
effort included nearly alx of the hardware in the laboratory,
the floppy disk controllers, A to D and D to A converter
controllers, and the entire computer controlled train system.
The software developments included principally a real time
operating system for the LSI-11 and the definition and
construction of a compiler for a real time higher level
language, with a substantial number of utilities (e.g., editor
and high level debug package) being developed along the way.

Subsequent sections will give a more detailed description
of these facilities.

2.2 Overview of Operating Environment

The operating environment for the Real Time Computing
Laboratory is shown in Figure 2. Each real time computing work
station is connected via a 1200 baud line to a remote data
concentrator. The remote data concentrator is an LSI-11
microprocessor attached directly via a 9600 baud line to a data
concentrator located at the University of Michigan Computing
Center.

University
of

Michigan
Computing
Center

Amdahl 4 70/V7
with Michigan
Terminal System

(MTS)

k.
Data

Concentrator

A

v

Remote Data
Concentrator

1200 baud
lines

Work
Station

Real Time Computing Laboratory

The remote data concentrator multiplexes a number of input lines
to the University of Michigan's central computer, an Amdahl
470/V7 computer running the Michigan Terminal Timesharing
operating system (MTS).

Thus, the real time computing laboratory operating
environment represents a four level computer hierarchy. This
arrangement is common in many manufacturing and business
applications.

Each real time work station consists of an LSI
microcomputer system, a floppy disk drive, a Decwriter terminal,
access to an analog computer, and various analog to digital and
digital to analog devices. In addition, a line printer and N-
gauge railroad are interfaced to one of the systems. These
microcomputer systems may be configured for independent
operation, for operation in communication with MTS, or for
multiprocessor operation among themselves.

The system software configuration is structured to take
advantage of facilities available on the University of Michigan
control computer. All assemblies, compilations, link editing and
text editing of programs are done under MTS. Object programs are
then either directly down loaded to the LSI-11 or are
transferred across the communication channel to the floppy disk
for subsequent execution. A small, local operating system known
as OSWIT (Operating System With Trains) and a cross compiler
known as CRASH (Compiler for Real time Applications SHop) have
been developed. Other local system utility programs and
libraries provide additional capabilities.

2.3 Overview of Hardware

The hardware associated with the mechanical analog facility
in the real time systems laboratory is built around three LSI-11
(Digital Equipment Corp.) microcomputer systems. As shown in
Figure 3, each system is connected to a floppy disk drive, a
Decwriter terminal (30 char/sec), and various analog to digital
(A/D) and digital to analog (D/A) converters. The system is also
connected to the university's central computer (Amdahl 470/V7)
through a serial interface and a remote data concentrator which
allows data transmission rates of 1200 baud (soon to be
increased to 2400 baud) .

Each microcomputer system is configured so that it can
control independently various analog and digital devices, as
well as communicate with the central computer for the purposes
of program development, cross-compilation, and down-loading of
data files and programs. The microcomputers can also be
connected together for disk to disk transfer, simulation of a
smalx hierarchy computing system or to allow experimentation
with computer to computer communication. Analog computers,
simple servo systems, and the mechanical analog facility are

connected to the system through the A/D and D/A converters or
through special interfaces.

The independent connection to the central computing system
provides the user with access to features of that system that
could not be readily implemented in machines as small as the
LSI-11 microcomputers. Programs can be developed, edited and
compiled without access to the LSI-11 systems which releases
those systems for real-time applications.

Decwriter
Terminal

Remote Data
Concentrator

(Link to
Amdahl
470/V7)

fv

H

LSI-11
Microcomputer

Floppy
Disk

■>
t /

/ V

D/A
f

A/D j

V

V

Real Devices
sensors, servo,

train

Figure 3. Laboratory Configuration

One of the most important features in the labo
collection of external analog devices that can be
controlled by the microcomputer systems. An analog
each station can be used to simulate a wide variety
devices with appropriate time and amplitude seal
operational characteristics of real world devi
simulated in conjunction with experiments on real t
and control algorithms. The control of simple
provides "hands-on" experience with the use of c

ratory is the
monitored or
computer at
of real time

ing. Thus the
ces can be
ime operation
servo systems
omputers and

10

hardware interfacing that evokes considerable interest in
further control studies.

The interface between the disk drive and the computer
system was designed and built in conjunction with an early
version of the course. This exercise provided students with
experience in coupling a high speed, real time device to the
system in such a way that it could be serviced according to
externally determined timing requirements.

2,4 Overview of Software

An essential part of any computer system is the software
available to the users of that system. Certain software tools
are necessary for easy and efficient use of the hardware
facilities.

The software tools developed for the real-time applications
facility are: a small operating system (OSWIT - Operating jSystem
With Trains); a cross compiler (CRASH - Compiler for a Real-time
Applications SHop); and a simple symbolic debugger (RAID - Real-
time Applications interactive Debugger). These tools enable
students to write real-time applications programs in a high-
level language and debug them symbolically.

The operating system (OSWIT) provides task scheduling,
interrupt handling, and I/O control oriented towards real-time
applications. A set of utility routines for arithmetic
conversion and programs for file maintenance and editing are
included in OSWIT. Commands allowing the LSI-11 console to be
used as a terminal for communication with MTS have also been
provided.

CRASH is a cross'compiler that runs under MTS to produce
LSI-11 assembly language code as output. This code is then
processed through a cross assembler to obtain LSI-11 machine
code. The CRASH language is a block structured language similar
to IBM's PL/I in its basic control constructs and arithmetic and
xogical operations. CRASH data types and I/O are specifically
designed for real-time data acquisition and control activities.
Interrupt handling and task scheduling constructs are available
in CRASH to facilitate real-time control.

Symbolic debugging of CRASH programs is possible using
RAID. If the debug option is specified, the compiler generates
debug tables, and the debug system will be automatically loaded
along with the program. RAID enables students to single-step
through programs, set break points, and to display and modify
variables referenced by name.

10

11

3. LOGICAL VIEW OF FACILITIES

3 .1 A./D and D/A Converters

There are two A/D and two D/A converters available on each
microcomputer system for general purpose application. The
specifications and operating details for these 8-bit converters
are given in Section 4.1.

3.1.1 Logical Interface

The D/A converter inputs are located at memory location
167772 for D/A 0 and 167723 for D/A 1. The analog output follows
the storage of values in these locations by about 1 microsecond.

The A/D conv
register (CSR) 1
CSR are shown in
and dons bits set
data register (1
the start of th
interrupt is ge
interrupt enable
initiates a new
will be free ru
conversions. The
reading the data
the processor as

erters are controlled by a command status
ocated at location 167770. The bits used in the
Figure 4 below. Any A/D converter with its mode
will have a conversion started whenever its
ocation 167774) is read. The done bit clears at
e conversion and sets upon completion. An
nerated upon completion if the appropriate
bit is set. Reading the A/D data register

conversion. If the mode bit is zero, the A/D
nning so that it is performing continuous

value of the latest conversion is obtained by
register. The A/D converter will not interrupt
long as the mode bit is zero.

The A/D converters are normally operated in
mode such that they make a conversion, latch
value, reset to zero, and start converting 6
latched data are displayed continuously as octal values
7-segment display modules.

a free running
the converted

usec later. The
on three

The data are transmitted to the data register by the
computer whenever the appropriate control status register (CSR)
bit is set high (1). This generates an interrupt in conjunction
with an end of conversion (EOC) signal. The data register is
read by the CPU and a DATA READ signal returned to the A/D logic
network. This DATA READ signal clears the interrupt and resets
the A/D converter to zero.

15 7 6 5 1 0

ADCl
DONE

ADCO
DONE

ADCl
INT.
EN

ADCl
INT.
EN

ADCl
MODE

ADCO
MODE

Figure 4. CSR bits for A/D and D/A converters

11

12

3.2 Train Facilities

This section deals with the logical aspect of the train
facilities, that is, the concepts of operation of the various
components and the logical interface between the train and the
LSI-11 microcomputer. There are four major components to the
train facility.

1. throttle sensors
2. photocell sensors
3. track control
4. switch control

The first two sensors transmit information about the
train's location and the commanded speed and direction to the
computer. The last two control the train's speed and direction
and the position of the track switches.

3.2.1 Throttle Sensors

Th
changes
associa
directi
potenti
the out
convert
s e 11 i ng
potenti
clockwi
counter
control
desired
approac
switch

e throt
in t

ted wit
on of
ometer
put f r
er. Mo
s to sp
ometer
se di
clockwi
box al
posit

hed by
command

tie sen
he man
h it a
the t

connect
om the
st p r og
eed con
as ze
rection
se tur
so cont
ion (st
the one
is per

sor is a iogi
ual throttle

throttle t
rain. The t
ed to a 5 vol

potentiomet
rams written
trol treat
ro speed. T

produces
n produces
a ins a toggle
raight or tur
oming train,
formed by a c

cal interface used to detect
controller. Each train has

hat controls the speed and
hrottle controller is simply a
t source. As shown in Figure 5
er is connected to an A/D
to translate the potentiometer
the center position of the
urning the throttle knob in a
forward motion, while a

backward motion. Each throttle
switch used to determine the

ned) of the track switch being
The execution of the toggle
omputer program.

to CPU

Figure 5. Throttle input

12

13

3.2.1.1 Logical Interface

A free running A/D c
throttle. The sensor logic
present and the most rece
throttle. As long as there is
taken. However, when either
an interrupt is generated and
position is placed on the
connected to the computer. To
interrupts as the throttle
control logic inserts a 1
interrupt. During this tim
processor.

onverter i
continuou

nt values
no change
the thrott
the new th
input to

avoid floo
potentiom

00 msec,
e no inte

s associ
sly moni
from the

in either
le or swi
rottle va

a para
ding the
eter is
time del
rrupts ar

ated
tors
swi

, no
tch
lue
llel
proc
ad j

ay
e pa

wi
bo

tch
act

is c
or
in

esso
uste
afte
ssed

th each
th the
and the
ion is
hanged,
switch

terface
r with
d, the
r each
to the

The bit utilization of the values placed on the input is
shown in Figure 6. Only five of the eight available bits from
the A/D converter are used. This results in a range of values
from 0 to 31 corresponding to the actual 0 to +5
output by the throttle. Since the operating range of
is -15 to +15 volts, the 0 to 31 range must be mapped
to +15 range by the computer program.

volt range
the train
into a -15

Each throttle controller has a unique address specified by
two bits, which allows a maximum of four throttles. The most
recent switch value is contained in bit 13: zero for straight
and one for curved.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

r.

switch
value

 v
A/D

value

-J

throttle
address

Figure 6. Throttle interface bit utilization

13

14

3.2.2 Photocell Sensors

The photocells are used to detect the location of the train
on. the tracks. Photocells are located at critical points (i.e.,
those places where the location of the train is essential, such
as around the switches and between electrically insulated
sections of track). The photocells are adjusted so that the
normal ambient room light keeps them on. As a train passes over
a photocell, it turns off. The photocells are grouped in pairs
to prevent a false indication of an end of train from light
between adjacent cars.

Each pair of photocells has a unique address. Whenever one
of the photocell pairs changes state (detects a train entering
or leaving the area) an interrupt is generated and the photocell
address and state are placed on the input to a parallel
interface connected to the computer.

The bit utilization for the photocell sensor is shown in
Figure 7. Eight bits are reserved for the photocell address.

Our present layout resulting in a maximum of 256 photocells.
uses only about 64 of these. Bit 8 represents the state of the
photocell. A 0 indicates an off or covered condition, a 1 means
the photocell is on or uncovered.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0

T v^
state
1 = on

Figure 7.

photocell address

Photocell input word

.2.3 Track Control

The trai
electrically s
separately ad
supply power t
direction is
the output of
controller log
and direction
controller for
is passed on
for each track

n layout
eparate
dressed
o the tr
handled
a para

ic netwo
values

the tra
through
secti on

(see Appendi
sections of t
and has its

ack. Computer
by placing a

llel interfa
rk. This 16 b

to a sing
in then store
the D/A conv

x C) is divided into about 40
rack. Each section may be
own D/A converter circuit to
control of train speed and

n appropriate 16 bit value on
ce connected to the train
it quantity will supply speed
le track address. The logic
s the commanded speed (which
erter) and direction polarity

14

15

A computer control program must address appropriate tracks
at appropriate times and send the proper values to the
individual track controllers. This process must be accomplished
dynamically as the photocell sensors indicate that a train has
reached the end of an individual track section. Any simple
procedure that applies the same power to all track sections is
inadequate for two reasons:

1. It fails to handle loop situations (i.e.,
to negative short would occur when the
over the conjunction).

2, It fails to allow multiple train control.

a positive
train passes

3.2.3.1 Logical Interface

The track control 1
parallel interface each
to the interface outp
control is illustrated i
banks of 64. Bits 12-15
configuration supports
therefore only bank 0
address of one track in
associated with each t
speed.

ogic receives
time the user
ut. The bit
n Figure 8. Th
specify one o

approximately
is implemen

the selected
rack contains

a 15 bit integer from the
program does an assignment
utilization for the track

e tracks are grouped into
f these banks. Our current
40 separate tracks and

ted. Bits 6-11 are for the
bank. A six bit buffer
the assigned direction and

When a track is addressed, bits 0-5 are taken from the
interface output and placed in the appropriate track buffer.
Bits 0-4 contain a value in the range 0-31 which corresponds to
a 0 to 24 voltage range. Bit 5 is used to control the polarity
applied to the track. A 0 in this bit will cause an engine to
move in the direction shown by the arrows on the track layout
diagram (Appendix C); a 1 in the direction bit will cause an
engine to move in a direction opposite to the direction of the
arrows.

15 14 13 12 11 10 9 8 7 6 5
—1

4
 1

3 2 1 0

v_ ^ f V /

Bank 0 track address Speed
0 = stoppi

31 = max

-
— di rect .ion

Figure 8. Track Control Word

15

16

3.2.4 Switch Control

Approxima
layout (see
branching/merg
switch depend
first case occ
"branching mo
of two directi
and is made
throttle contr
computer recog
"branching mod
set the track

tely 25 track switche
Appendix C). These
ing of the tracks. Th
s on the direction
urs when the train is
de". That is, a deci
ons the train will go
by the user by set

ol box to either str
nizes that a train is
e", it reads the posi
switch accordingly.

s ar
swi

e po
of a
app

si on
. Th
ting
aigh
app

tion

e incl
tches
sition
pproac
roachi
must
is dec
the t

t or
roachi
of th

uded in the
allow for
of an ind

h of the tra
ng the switc
be made as t
ision is ar
oggle switch
turned. Wh

ng a switch
e toggle swi

train
two way
ividual
in. The
h in a
o which
bitrary
on the

en the
in this
tch and

The second case of switch control occurs when the train is
approaching a switch in a "merging mode". That is, there exists
only one direction that the train can continue from the switch.
The decision in this instance must be made so as not to derail
the train. Upon recognizing that a train is approaching a switch
in the "merging mode", the computer program must set the switch
accordingly. The switch command set by the user is ignored in
this case.

3.2.4.1 Logical Interface

The bit utilization for switch control is shown in Figure 9
The switch control logic is driven by the same 15 bit parallel
interface output as the track control. A switch control command
is distinguished from a track control command by reference to
track bank 15 which is is interpreted as a switch control.

The switches are grouped in sub-banks of 8 each. Bits 3-11

J^

Bank 15 Sub-bank Switch control
0 = straight
1 = turned

are used to address
assignments are:

Figure 9. Switch Control Word

i particular sub-bank. The sub-bank

Sub-Bank
0
1
2
3

Switches
0-7
8-15
16-23
24-31

16

17

Each of the eight least significant bits (bits 0-7) controls one
switch in the assigned sub-bank. A bit value of 0 indicates a
straight position, while a 1 indicates turned.

3.3 Software Control of Multiple Trains

One of the principal student assignments using the train
setup is to control multiple trains in a transparent manner.
That is, the computer is to allow multiple engines to run on the
train system; yet it is to appear to the user that the train
responds to his control as if he had direct control over each
engine in the usual model railroading sense. Moreover, the
computer is to arbitrate all contention situations that arise
and prevent either derailment and/or collisions.

We will discuss the general problems involved in such
control, general approaches to the resolution, and some
alternatives which have been used. In implementing this type of
throttle driven control there are three critical considerations:

. formulation of a data structure to describe the physical
and electrical connections of the train layout

. actions to be taken upon a throttle interrupt,

. actions to be taken upon a photocell interrupt.

3*3'1 Throttle Interrupt

The throttle interrupts are the most straightforward of the
three major components to the train control system. An interrupt
is generated any time one of the throttle or switch settings is
changed. The corresponding actions are relatively simple. The
data structure that describes the train layout must also include
a structure to store those track sections presently occupied by
each train. When a throttle interrupt occurs the control program
reads the value inputted by the throttle controller. Since the
throttle number (train identification) is included in these data
the program then merely looks up the track sections occupied by
the train and resets their throttle speed in accordance with the
new commanded speed.

Any new position of the command switch is also saved. No
action is taken for this switch setting until the train covers a
photocell approaching a switch.

Several variations are possible in more elegant control
programs. For example, one might implement a speed limit on
certain sections of track to control the maximum speed with
which a train could negotiate a curve or switch. Likewise the
switchyard can be programmed such that trains will not run into
the bumper stops at the dead-end of several track spurs.

17

18

3.3.2 Photocell Interrupt

The most complex set of actions which must be undertaken
occur upon photocell interrupts. Recall that photocell
interrupts occur when a photocell is either covered or No action
is taken for this switch setting uncovered and that the input
information provided by the controller includes the number and
state of the interrupting photocell. There are a substantial
number of distinct situations that require specific action.
Typically the number of the photocell involved in the interrupt
will indicate which case is to be performed.

We will assume that the information required by the control
program is available somewhere in the data structure without
worrying for the moment about how this is done. It is easiest to
consider first the actions required by a single engine on a
track without considering the complications arising from the
possibility of interference with other trains. The variations to
account for multiple trains will be considered later.

3.3.2.1 Simple Track Junction

The simplest situation is that occurring when the train is
about to pass from one electrical section of track to another,
as illustrated in Figure 10. In this.and subsequent figures the
trains are assumed to be traveling from left to right. The
sequence of events and actions is as follows:

1. The train covers photocell A which generates an
interrupt to the processor and passes the photocell
number and the covered status to the CPU. The control
program uses the photocell number as an index to look
up the number of the track associated with photocell
B. Power is then applied to this track. At the same
time the internal data structure is updated to include
track N in the list of active track sections occupied
by the train.

2. Photocell B is covered which generates an interrupt to
the processor. No action is taken.

3. Photocell A is uncovered which generates an interrupt
to the processor. No action is taken.

4. Photocell B is uncovered which generates an interrupt
to the processor. At this point the train has moved
completely off track M and onto track N. Therefore,
the control program would remove track M from the
lists of track sections occupied by the train and set
the power on track M to zero.

Note that events 2 and 3 could occur in either order depending
upon the length of the train.

18

are several variations which the
handle in this case. First of

the throttle after covering A but before B

There
be able to
reverse
thus backing the train off track
step 4 or steps 3 and 4 applied to
and should cause no problem.

19

control program must
all, the user may

is uncovered.
N. This is essentially either
track M instead of track N

A second variation occurs if either track section M or N is

rac k M Track N
i 1 1—i 1-

o o
A

 ^
B

Figure 10. Simple Track Junction

•

train may actually occupy more than two
this reason that one should keep a

train and their speed
this means that

a new

a given

physically short; the
track sections. It is for
list of tracks occupied by
controls. In terms of the photocell operations unia meana
there may be an intervening cover of a photocell requiring
track allocation before step 4 is reached.

3.3.2.2 Switch Entrance—Variation 1

Assume that
as shown in Figure
from position A
identical to those
Before powering up
its data structu
avoid derailment,
straight and under
turned. Thus, in
derailment as a fu

the train
11. It ma
or A' .
in the pr
track sec

re for the
Under phot
photocell
this ca

rther acti

is
tter
The
evio
tion
pos

ocel
A'

se
on d

entering
s not wh
operati

us secti
M the c

it ion of
1 A the
the desi
the swi
uring st

a sw
ether
ons
on wi
ontro
the

desi r
red
tch m
ep 1

itch from
the tra

to be per
th one
1 program
switch ne
ed positi
position
ust be se
above.

the left,
in enters
formed are
exception.
must scan
cessary to
on will be
would be

t to avoid

19

20

Track N

3.3.2.3

Figure 11. Switch Variation 1

Switch Control—Variation 2

show
simp
this
dete
the
inte
trac
trac
from
sect
sett
3.3.

Cons
n in
ie tr

cas
rmina
stor
rrupt
k se
k Q.

the
ion i
ing
2.1

ider a t
Figure

ack tran
e, howe
tion of
ed swit
. The da
ction i
The cont

last
s to be
commands

rain enteri
12. The co

sfer exampi
ver, step
the proper
ch positio
ta structur
dentificati
roi program
throttle i
powered and

Otherwis

ng another
ntrol here
e consider

1 must
switch set
n command
e for phot
ons, that
uses the

nterrupt
then issu

e the co

switch fr
is simila

ed in Sect
be raodifi
ting. This

from th
ocell A mu

for trac
stored

to determ
es the app
ntrol is

om the 1
r to tha
ion 3.3.
ed to i

is do
e last
st incl
k N and
switch
ine whi
ropriate
as in

eft, as
t of the
2.1. In
nclude a
ne with
throttle
ude two
that for
position
ch track

switch
Section

y^

^

--r' x r V y \ Track

o ——■

\ -V LV C
A

-^.

 i 1 c'

Figure 12. Switch Control — Variation ?.

20

21

3.3.2.4 Crossover

Figure
changing o
occupancy t
control pr
section N i
covered (w
is not safe
the contro
zero to hal
a throttle

13 shows
f track
0 avoid a
ogram mus
s occupied
ith the tr
for a tra

1 program
t the trai
interrupt

a train cro
power but
collision,
t check s
and either

ain moving
in on secti
must set

n. Upon thr
to the prog

ssover. It
is merel

Upon cover
ection tra

photocel
in the app
on M to
the power

ottle reve
ram) the t

does not
y concern
ing phot
ck N for
1 C or
ropriate
proceed.
level on

rsal (whi
rain may

invox
ed wit
ocell
occupa
D ha

di rect
Accor
secti

ch ge
be bac

ve any
h track
A the

ncy. If
s been
ion) it
d i ng 1 y,
on M to
nerates
ked-up.

Figure 13. Track Crossover

In the case of multiple trains, when the train has passed
over section N (cleared the crossover), power may be reapplied
to section M and the stopped train allowed to proceed from
photocell A.

3.3.2.5 Loop Control

One of the more complicated issues occurs when a loop is
encountered, as in Figure 14. The important thing to notice
about this situation is that the inside rail meets the outside
rail if one follows it around the loop. Thus, to avoid an
electrical short circuit there must be polarity reversal of the
applied track power even though there is no reversal in the
commanded direction of the train from the throttle. The key

21

22

issue in these situations is to identify the presence of a loop,
or alternatively, to define a general algorithm to determine
polarity of power applied to the track.

In this simple case the existence of a loop is immediately
obvious. However, such is not always the case. For example, a
close look at the train layout of Appendix C will reveal that
there are in fact two loops which occur on the train layout. The
second loop involves a number of track sections, not just two.
It thus becomes difficult to identify just where in the loop the
power should be reversed. In fact there is not necessarily a
unique answer in that the loops can be entered from several
different points. A more general polarity determination
algorithm is needed to handle such problems.

In developing a solution to this problem, consider the
movement of the train on a single section of track. Each active
track section has a polarity associated with it related to the
value of the direction bit in the output word for that section.

Consider in Figure 14 that a train enters from the left
with direction bit set to 0 and the switch is in the turned
position. Assume throughout this example that the commanded
train direction does not change. The train will proceed through
the turned portion of section 1 and approach the R end of
section 2. To proceed onto section 2 power must be applied and
the direction bit for section 2 set to a 0. When the F end of
section 2 is approached section 3 must be powered up with the
direction bit also set to 0. When the F end of track 3 is
approached, however, the switch position must be set to straight
and section 1 powered up with direction bit 1. That is, the
polarity must be reversed even though the commanded train
direction has not changed.

To develop an algorithm to solve this problem one must
consider the possibility of changes in the commanded direction
as well. Moreover, the occurrence of a loop may not be at all
apparent. The loop may well involve a dozen or more sections of
track and be obscured by crossovers and multiple switches. One
would therefore like to develop an algorithm that does not
depend on loop detection but rather only on the parameters
associated with a given track section and the instantaneous
state of the commanded direction.

Let us therefore introduce three variables which describe
the track orientation, the commanded direction, and the desired
direction bit for the track. Let DIR(k) be the direction bit for

22

23

are trying to track section K which is the variable we are crying to
determine. Let EDIR be the variable which represents the desired
engine direction. (The particular algorithm by which EDIR is
determined from the throttle setting is of no concern here as
long as it is a consistent algorithm.)

The first issue of concern is when any new value of DIR(k)
has to be determined. Clearly this has to be done whenever the
user changes the throttle position and a throttle interrupt is
generated. It also, however, must be done when the train is
about to pass from one track section to another.

Track 1 Track 3

Figure 14. Polarity Reversal in Train Loop

This latter situation is indicated by a photocell interrupt
from the photocell just covered. However, not all covered
photocell interrupts represent entrance to a new track. For
example, in the previous illustration when photocell 2 was
covered the train had just entered track 2 and was not about to
enter any other track. To detect this situation we associate
with each photocell a logical variable END(PC#) according to the
following definition.

END(PC#)= 0 if photocell is at R
1 if photocell is at F

A train on .track section K receiving a covered photocell
interrupt from photocell j is about to enter a new track section
if the following condition holds:

END(j) XOR DIR(k) = 1

The
vari able
we introduce

next problem is to determine the polarity, i.e., the
DIR of the track about to be entered. For this purpose

a new variable, END.NEXT. This parameter is again

23

24

indexed by the photocell number. However, as in photocell number
1, the end of the track about to be entered depends upon a
switch setting. Accordingly, the parameter END.NEXT must also be
indexed by the switch number and the commanded switch position.
Thus we define END.NEXT as follows:

END.NEXT(PC#,SW#,POS) = JO if next track end R
.f next track end F

(0 i:
U l!

Since we know that we are about to enter the next track we can
determine its direction bit from this END.NEXT variable. In
particular if M is the next section to be entered the direction
bit for section M is

DIR(M) = END.NEXT(PC#,SW#,POS)

The above algorithm is reasonably straightforward and
depends only upon track parameters and the direction bit of the
previous track section. It is possible, however, that the user
might reverse the throttle while on a section of track. Then the
direction bit on the track section must also be reversed. This
is easily remembered by recording the commanded engine direction
upon entry to a track and simply comparing the commanded engine
direction with the commanded direction when the track was
entered at each throttle interrupt. More precisely let EDIR.E(k)
be the commanded engine direction when track k was entered, and
let DlR.E(k) be the assigned value of the direction bit when the
track was entered, i.e., the variable DIR.E is obtained directly
from END.NEXT of the previous track. Then the direction bit at
any throttle interrupt is calculated as:

DIR(k) = DIR.E(k) XOR (EDIR.E(k) XOR EDIR)

We thus have two equations to calculate the appropriate
direction bit, one when a track is entered and a second when a
throttle interrupt occurs. In addition we have an expression
telling us when a covered photocell interrupt indicates that the
train is about to enter a new track section. With these
expressions it is possible to handle the loop problem without
any complicated loop detection algorithms.

3.3.2.6 Multiple Train Considerations

It is necessary to add only a few new checks to the control
program to include multiple trains. When a photocell at the end
of a track section is covered and it is necessary to power up a
new section (via any of the schemes described above) the control
program must now check the next track section to see if it is
already occupied, i.e., the data structures for the layout must
include some way of identifying occupied sections. If the
section is occupied, the train about to enter that track section
must be stopped in its present location and not allowed to
proceed. Otherwise, the probability of a collision is high.

24

25

When a photocell is uncovered and it is desired to de-power
a section of track it is also necessary to check to see if there
is a train waiting to enter the track about to be de-powered. If
this is the case that track section must be reallocated to the
waiting train which is then restarted after release of the track
by the first train.

It is also possible for a train stopped and waiting for a
track to clear to be reversed without the awaited forward track
clearance. Thus, an additional check must be added to the
throttle control to provide for a possible train restart by
reversal.

With these few additions to the control program it is in
principle possible to handle multiple trains. There is, however,
one other practical consideration which should be taken into
account. This consideration is really only an implementation
consideration and does not change the operating principles
described above. Multiple trains can generate multiple photocell
interrupts at closely spaced points in time. It has been
observed that this sometimes causes a failure in the train
control program. The problem can be alleviated by not taking
direct action upon the receipt of a photocell interrupt but
rather storing the photocell interrupt information on a queue. A
secondary task is then started to empty the queue. The interrupt
driven storage task can then be quite short which minimizes the
chance that an interrupt will be lost due to two trains hitting
photocells at nearly the same point in time.

3.3.3 Data Structures

By now it is evident that the major key to the control of
the train system by computer lies in the selection of data
structures both to represent the physical and electrical layout
of the track and to keep track of the operating state of the
system. Versions of the train control program have been written
with different data structures. Rather than state a specific
structure, the range of structures will be described.

One can delineate a finite number of circumstances which
can arise in terms of covering or uncovering photocells and the
direction of train travel at that time. At one extreme users
have coded all of this information by hand and stored it with
the data structure describing the track layout. Generally, this
data structure is indexed around the photocell number. When a
photocell interrupt occurs the proper action is determined
merely by a table lookup operation. This approach leads to a
relatively large data structure and a relatively short and
simple program.

The other extreme is to highly encode the data describing
the track and write a somewhat more sophisticated program to
calculate (as in the loop operation described above) the

25

26

appropriate actions.

The most suitable mode of operation with either approach
seems to be to store the data that describes the track layout in
a separate disk file and to dynamically load it into the program
data structures as an initialization phase before the program
takes control of the train. This allows the track layout
structure to be changed or corrected without recompiling the
control program.

26

27

4. PHYSICAL DESCRIPTION OF HARDWARE FACILITIES

The analog facilities are divided into three major
categories for the purpose of this discussion. The data
conversion facilities will be discussed first, then the train
facilities, and lastly the other facilities.

4.1 A/D and D/A Conversion Facilities

Two 8 bit A/D binary counter converters (Datel, Model ADC-
89A) are associated with each system. These converters are
operated as monopolar devices with an input range of 0-10 volts
and a 200 microsecond maximum conversion time. They can be
operated either in free-running or interrupt mode under program
control. The analog input signal to each A/D converter is
limited to 10 volts maximum by a zener diode-operational
amplifier buffer stage on each input. This signal can be read
with an analog voltmeter and its digitized version can be viewed
on three octal digit 7 segment display modules.

At the time of selection (about three years ago) these
converters were relatively low cost ($70.00) with reasonable
temperature stability and conversion speed. Since high precision
rapid conversion is not important in the instructional context
of the laboratory, these 8 bit converters are more than
adequate.

Two 3 bit D/A converters (Datel, Model 19BB) are available
on each system. These converters are also operated as monopolar
devices with an output range of 0-10 volts and 20 microseconds
settling time. The offset and gain of each D/A converter can be
set through adjustment of two potentiometers. The analog output
can be displayed on an analog panel meter and the digital input
can be read on the 7 segment display modules. These general
purpose converters are also relatively low cost ($29.00) with
reasonable temperature stability and conversion speed.

The four converters, the three digit digital display, the
analog voltmeter, and the two switches that determine the
signals to be read are mounted on a single panel that serves as
a preplate for each computer setup. The analog input and output
signals are connected to banana jacks mounted on the preplate.

27

28

4.2 Train Facilities

4.2.1 Sensor System

4.2.1.1 Throttle Sensor

This section gives a detailed description of the hardware
for the electronic throttle (see ELECTRONIC THROTTLE BOARD
circuit in Appendix D). A logical description of the throttle
can be found in section 3.2. In normal operation the train speed
and direction are controlled by a computer program. The program
receives data from an electronic throttle control box operated
by the user. Each train has its own throttle control box.

The throttle consists of a 500 ohm potentiometer connected
to a +5 volt source. The voltage across this resistance is fed
into an operational amplifier (MC 1458) and the output from the
op amp is in turn inputted to an A/D converter (DATEL, ADC-89A).
Only the "middle" five bits of the eight available from the A/D
are used, as greater precision is not necessary for train
control These five bits are used as input to a six bit D-type
latch (SN 74174) . The remaining latch bit is used for the
commanded position of the track switches. Two poles of the
position toggle switch are connected to the preset and clear
pins of a D-type positive edge triggered flip-flop (SN 7474) to
provide this position signal.

If the controls on the throttle box are not changed, no new
information concerning the train's speed or direction is
available. Only when a change occurs is there reason for the
computer to be interrupted by the throttle control logic. Thus,
the purpose of the six bit latch is to hold the past value from
the throttle. The six bits at the latch input are compared to
the six bits at the latch output by two four bit comparators (SN
7485). If the two quantities are equal the clock input to the
latch is kept low (inhibited) and the latch is not triggered.
However, if they are not equal, the low signal from the
comparator is used to trigger the latch and send an interrupt to
the computer (via the NOR gate IC4—see discussion below).

A problem with generating interrupts in this manner is that
an interrupt will be sent to the computer for every incremental
change in the throttle potentiometer. Since the rate at which
these interrupts can be generated is governed by the speed of
the A/D converter and the 4 bit comparator, the processor could
become flooded with interrupts. To circumvent this problem two
one-shots (SN 74123) provide a 100 ms delay between interrupts.

The end-of-conversion signal from the A/D converter is
inputted to the first one-shot. The normally high output of the
one shot feeds into one input of a two input NOR gate (SN 7402).
The other input comes from the comparators. Now, when conversion
is complete, the one-shot will go low. This allows the output

28

29

from the comparator, via the NOR gate, to control the triggering
of the latch. If there has been a change, the new value is
latched, and an interrupt sent to the processor. The conversion
process is restarted by a second one-shot triggered from the
first one-shot.

The process of generating an interrupt and placing the
appropriate information on the parallel interface to the
computer starts with the output from the NOR gate described
above. The pulse from this NOR gate is used as the clock input
to a D flip-flop (SN 7474) , whose D input is always held high.
The complement (low level) output of the flip-flop is passed
through a bus buffer gate (DM 8093) . The inverted output of the
bus buffer is the actual interrupt signal. It is sent to the
LSI-11 as a throttle interrupt request. Simultaneously, the
address of the interrupting throttle and corresponding A/D
values must be placed on the data lines to the computer.

As mentioned in the Logical Description section, a maximum
of four concurrently running trains is allowed. Each train is
distinguished by the throttle that controls it and each throttle
has a unique address between zero and three. These throttle
addresses are generated by a counter (SN 74161). The two line
output of the counter wilx contain the address (0-3) of the
interrupting throttle. The two outputs of the counter are fed
into a two to four decoder (SN 74155) . Basically, each decoder
output selects one throttle and (in its turn) opens the bus
buffer gates to pass any interrupts which may be present for
that throttle to the processor.

The clock input to the counter is provided by a
continuously running oscillator (NE 556). The output from the
oscillator is used as one input to a two input MAND gate (SN
7400). The other NAND input comes from the bus buffer line. When
a low signal (interrupt) is present on the bus buffer line, the
oscillator is effectively disabled (via the NAND) from the clock
input of the counter. This action suspends the counting
sequence.

The complement (low level) outputs of the decoder have
three important functions. First, they are used to control the
bus buffer gates that select the interrupting throttle. Each of
the four lines from the decoder corresponds to a bus buffer gate
(which in turn corresponds to one of the throttles). When a
decoder line goes low, the corresponding buffer gate is
selected. If the bus buffer input is also low, the signal will
be placed on the bus buffer line and the counting sequence will
be suspended. Thus the output of the counter will contain the
appropriate throttle address.

Second, each decoder output line corresponds to one of the
buffers containing the six bits of data from the throttle
control box. Again, when the decoder line goes low it selects

29

30

one of these buffers. This places the data on the parallel
Interface to the computer

Finally, the decoder lines select one of the four NOR gates
(SN 7402) connected to the clear input of the D flip-flops
associated with each throttle. After the computer has processed
the interrupt it sends a DATA TRANS pulse when the information
on the data lines has been transmitted to the computer. This
pulse is also sent to the four NOR gates just mentioned. The
output of the selected NOR is inverted and used to clear the
interrupting D flip-flop. Once cleared, the counter will resume
and the entire sequence can begin again.

4.2.1.2 Photocell Operation

Overview

The PHOTOCELL CONTROL BOARD is divided into three levels of
circuitry. At the lowest level is the PHOTOCELL PLAVE BOARD (see
Appendix D). Photocell sensors are placed around most of the
switches on the track. These sensors are grouped in pairs with
each pair having its own unique address. When an engine covers a
photocell, the sensor is turned off. When uncovered, the
photocell is turned on. Each SLAVE BOARD consists of a photocell
pair connected to a PHOTOCELL MASTER BOARD. The MASTER BOARD
prevents any false indication of a change in state and sends the
state of the photocell to the PC LOGIC CIRCUIT. If a change of
state in one of the photocells occurs, the LOGIC CIRCUIT
forwards a signal to the next higher level. Page 1 of the
CONTROL BOARD schematic diagrams shows the hardware used to
monitor each LOGIC CIRCUIT in order to detect any change in
state of a photocell. The CONTROL BOARD then reports the change
to the INTERRUPT CONTROLLER (see COMPUTER INTERFACE BOARD). If
the device's interrupt' system is enabled, an interrupt to the
processor is generated through the vector address associated
with interrupt A.

Each time a photocell generates an interrupt, its address
and state are input to the parallel interface and held until the
data is read by the central processor. After the CPU reads the
data bus lines from the device, it generates a DATA TRANS to
indicate that it has completed the data transfer.

Photocell Address Generation

The hardware necessary to generate the photocell address
and state is shown on page 1 of the PC CONTROL BOARD diagrams.
The eight bit photocell address is generated by using two four
bit binary counters (SN 74161). The output of an oscillator (NE
556) and the inverted POINT signal (which is generated from the
PC LOGIC CIRCUIT) are used to clock the two counters. The eight
bits from the counters are connected directly to the input bus
lines at the parallel interface on the computer.

30

31

Each count corresponds to one photocell pair. The counter
outputs are also connected to a set of decoders (described
below). With each count, one photocell pair is selected and
interrogated for a change in state. The four most significant
bits of the photocell address are decoded (SN 74154) to select
one of the five banks of photocells. Each bank consists of four
PC LOGIC CIRCUITS. Each PC LOGIC CIRCUIT monitors four different
photocells (one at a time) on the track in order to determine if
one has changed state.

The LAST+1 PC ENABLE line is used to clear the two four bit
counters. This LAST+1 PC ENABLE line is the sixth output line
from the decoder (SN 74154) used to select the bank. After all
the photocells in each of the five banks have been monitored
this sixth output line from the decoder will be activated IOW,
which clears and restart the counters from zero.

The least four significant bits of the photocell address
are passed through a second 4/16 decoder (SN 74154). The outputs
from this decoder are the select lines used to monitor one of
the sixteen photocells that are in a bank. These select lines
are inputs to the PC LOGIC CIRCUITS.

Change o_f State Detection

Page 2 of the PC CONTROL BOARD diagrams shows a PC LOGIC
CIRCUIT. The inverted DO, Dl, D2, and D3 lines are the output
select lines from the decoders, mentioned earlier. One of these
lines is selected at a time and activated low to monitor a
photocell. Only information pertaining to this particular
photocell can be passed to another level because of the bus
buffer gates (SN 74125). A strobe pulse along with the select
line are used as true inputs to a NOR gate (SN7402) to clock a D
flip-flop which has stored the last recorded state of the
photocell. This strobe pulse is generated by the INTERRUPT
CONTROLLER of the COMPUTER INTERFACE BOARD upon receiving a DATA
TRANS pulse from the computer. PCI, PC2, PC3 and PC4 are outputs
from the MASTER BOARD and contain the current state of the
photocells.

The object of the LOGIC CIRCUIT is to determine whether the
current state of the photocell is different from that stored in
the D flip-flop. This can be done with the use of an XOR
(exclusive OR) gate (SN 7486) whose inputs are the current
photocell state and the inverted output of the D flip-flop. When
the D flip-flop is clocked and a change of state has occurred,
the output of the XOR gate will be LOW. The output of the XOR
gate is connected to the HCLK line. IF HCLK remains high (i.e.,
no change in state) the binary counters are incremented by 1 and
the next photocell monitored. When HCLK goes low the counters
are disabled and an interrupt generated. The photocell address
and new state are then sent to the CPU. Notice that when the
photocell changes state, the inverted output of the D flip-flop

31

32

will contain the new state of the photocell. The inverted output
is connected to the DATAOT line which transfers the photocell's
new state to a higher level.

Light Detection Circuitry

The lowest level of hardware with respect to the PHOTOCELL
CONTROL BOARD consists of the MASTER and SLAVE BOARDS (page 3 of
the PC CONTROL BOARD). When light hits the photocell pair of a
SLAVE circuit, the sensors act like a battery and generate a
signal to the MASTER. When an engine covers the photocell
denying it light, a very high impedance prevents any current
from flowing on to the MASTER.

The MASTER circuit must be able to send a correct high or
low signal to the LOGIC CIRCUIT depending on whether the
photocell is on or off. The one-shot is included in the circuit
to ensure no waviness in the signal and to prevent a false
indication of an end of train caused by light between cars when
multiple cars are used.

The output of the amplifier (MC3302) is tied to one input
of an AND gate (SN 7408) whose output is also low, sending a low
signal to the LOGIC CIRCUIT. The output of the amplifier is also
tied to the clock of a positive-edge triggered one-shot (SN
74123) whose negative output is normally high. When an engine
covers a photocell, the output of the amplifier is low. The one-
shot ensures that a change does not take place for 45 ms. If a
false uncover occurs (due to an analog circuit voltage in the
undefined region for logic circuit), the one-shot triggers,
making Q low; this keeps the output of IC4 low. When the
photocell is uncovered by the train, the output of the amplifier
is high. The low to high transition causes the one-shot to
trigger a low pulse for 45 milliseconds (i.e., a delay is
inserted). This approach is used to make sure that the light
between cars, if multiple cars are used, would not affect the
state of the photocell. Once the one-shot terminates, the output
of the AND gate (SN 7408) will be high, sending the correct high
signal to the LOGIC CIRCUIT.

Throttle-Photocell Interrupt Management

The INTERRUPT CONTROLLER of the COMPUTER INTERFACE BOARD is
simply a two-level priority circuit between throttle and
photocell interrupts. The PC INIT signal is generated by the
computer upon power up and is used as a power clear to reset all
of the D flip-flops in the LOGIC CIRCUITS.

32

33

4.2.2 Control System

4.2.2.1 Track Speed Controller

The track control word is organized as shown in Figure 8.
The track speed controller selects one of 64 tracks from a six
bit track address, (all tracks are on Bank 0). The speed is a
five bit number (yielding possible speeds 0-31) and a direction
bit.

Track selection occurs as follows. (See TRACK SPEED
CONTROLLER 1 of 3 in Appendix D.) Bits 10-11 of the track
control word are input to a l-of-4 demuxtiplexer (SN74155). The
four outputs are used to enable one of the four l-of-15
demultiplexers (SN74154) that are fed with bits 5-9. The result
is a l-of-64 demultiplexer. (Tracks are numbered 0 through 53.)

Two types of speed control are implemented. The first is
the traditional analog dc voltage controx used on tracks 0
through 15 (0-17 octal). The second, used on tracks 15 through
31 (20-37 octal), is under digital control: the track is pu±sed
with a high voltage pulse train, with duty cycle proportional to
the desired speed.

The analog controller (see TRACK SPEED CONTROLLER 2 of 3 in
Appendix D) works as follows. The incoming speed (5 speed bits +
1 direction bit) is latched. The most significant four bits of
the speed are held in a 4-bit latch (SN7475). The least
significant bit and the direction bit are held in a dual D-type
fxip-flop (SN7474). The five speed bits are fed to a home built
weighted-resistor digital-to-analog converter. The resistor
ladder is composed of five separate resistors. Some attempt was
made to match the values when the boards were built (nominal
vaxues are 2, 4, 8.2, 16, and 33 K ohms). The operational
amplifier used in the D/A is a MC1458. The output from the op
amp drives a simple two transistor amplifier (a pair of
2N3053ls). This yields a maximum possible voltage of 25 volts.
This is directed to the track through a double-pole, double-
throw relay (PD RI0-E1-Y4-V52). The direction bit is inverted
with a NAND gate (SN 7401) and used to drive a transistor
amplifier (a single 2N3055). The transistor provides the power
to switch the direction relay (the NAND gate was used as an
inverter only because of availability).

The digital controlxer (see TRACK SPEED CONTROLLER 3 of 3
in Appendix D) differs functionaxly from the analog in its
resolution. Ail five speed bits + the direction bit are latched
in a hex D-type flip-flop (SN74174). The most significant four
bits are used to set a four bit presetable binary counter
(SN74151). The least significant bit is not used.

The counter is used to pulse the track with a 25 volt
pulse. As the duty cycle is increased, the speed increases. A

33

34

speed of 0 never pulses the track (duty cycj>e = 0)^ A speed of 2
sends a 1 to the counter (since the least significant bit is not
used) and yields a duty cycle of 1/16=,0625. A speed of 24
(counter input=12) gives a duty cycle of 12/16=.75. Finally, a
speed of 31 yields a unity duty cycle. This is accomplished by
loading the counter with the upper four bits of the speed and
letting it count from there to 15. Power to the track is
inhibited while it is counting. During the remaining (up to 16)
counts, power is applied to the tracks. One of the counter
outputs, TC, becomes high only when the counter reaches 15. TC
is inverted and fed back into the CEP input. CEP allows the
counter to count only when it is high.

An oscillator (described below) provides clock pulses for
both the counter and a load function (once every 16 clock
pulses). The load pulse reloads the counter with an initial
count and resets TC xow. The net effect is to let the counter
count from the speed/2 to 15 and stops for the remainder of 16
counts. TC is reinverted and used to drive a dual transistor
amplifier exactly as in the analog case. The direction bit is
inverted and controls the relay in the same manner. (Note: all
inverters on this board are 3N7406.)

The oscillator for the digital speed controller consists of
a NE556 oscillator and a SN'7493 divide-by-16 counter. The
oscillator provides the CLOCK input to the SN74161 counter on
the speed controller. The SN7493 divides CLOCK by 16 to provide
the LOAD pulses for the counter.

Whiie in principle the two types of controllers merely
provide two different mechanisms of providing a track voltage
proportional to the commanded speed, some pratical differences
have been found. Specifically, the output amplifier stage on the
analog version of the track controller has been found to be
quite nonlinear. The table in Table 1 shows this difference. The
operational effects, however, are not as drastic as would seem
from this table. There are several reasons for this. First,
static friction keeps the train from operating at much below 4
volts. Secondly, there is no printed calibration on the hand
held throttle; one oniy has the "feej." for its operation.
Thirdly, the usual operating range is at the higher speeds at
which the difference is less. Smaxl speed changes can sometimes
be noticed as the train moves from one track section to another,
but this will occur even between analog tracks as low precision
resistors were used (because they were available and cheap) in
the weighted resistor D/A converter.

34

35

4.2.2.2 Switch Controiier

The switch controxier is activated through bank 15. The
switches are divided into 16 subbanks of eight switches each.
After the programmer selects a subbank the switch controiier
sets each of the eight switches on the subbank ONE AT A TIME; it
does not attempt to apply power to eight switches

If all switches do not set properly within a simuitaneousxy.
short time, an audible alarm sounds.
format is shown in Figure 9.

The switch control word

TRAIN TRACK
SPEED-VOLTAGE RELATIONSHIP

Track 0-17 Track 20-46
Speed Voltage Speed Voltage
(Octal) on track (Octal) on track

(Decimal) . (Decimal)

1 1.2 0 0
16 1.8 2 1.1
20 4.0 10 4.4
23 8.2 16 7.3
24 9.5 20 9.0
25 11.0 22 10.0
26 12.0 24 11.0
27 13.5 30 12.0
30 15 32 13.0
31 16 34 15.0
32 17 36 18.0
33 19 40 0.0
34 20 42 -1.6
36 20 56 -7.8
37 20 50 -9.0
40 -1.2 62 -10.0

64 -11.0
55 -1.2 66 -12.0
56 -1.8 70 -13.0
60 -4.0 72 -14.2
70 -15.0 74 -16.0
77 -20 76 -18.0

TABLE 1

The switch controiier is activated initially by selecting
bank 15 (bits 12-15) (see COMPUTER INTERFACE BOARD and SWITCH
CONTROL circuits in Appendix D) on a l-of-16 decoder, (SN
74154) . The complement of the bank 15 select line is used to
enable a second l-of-16 decoder to select a subbank from bits 8-

35

36

11. Only subbanks 0-3 have been implemented (4x16=64 switches.)
The subbank select lines are inverted and used to enable exactly
one pair of four bit latches (SN 7475). These latches hold the
switch settings.

The latched setting bits are XORed with the feedback of
the actual switch position. If they differ, the commanded bit is
used to set the switch to the desired position.

All eight switches would need switching in the worst case.
Since this wouxd require an inordinate amount of power, they are
switched sequentially. The outputs from the XOR gates are fed
into a l-of-8 priority encoder (SN 74148). (All inputs to the
priority encoder are complemented.) The priority encoder chooses
the high order 0 input and encodes its number onto the three
output lines. These three lines are immediately decoded again
(using an SN 74138 l-of-8 decoder) to select exactly one switch
enable line. Since the priority encode inputs are complemented,
if the feedback latch (fxip-flop) output matches the set bits,
the XOR gate puts out a 0 which is eventually encoded by the
priority encoder. Inverters (SN 7404) are used to "re-
compxement" the switch enable lines.

Now consider a singxe switch (preferably the one that has
been selected). The set bit is inverted, and both the original
and the inverted signals provide the first inputs to NAND gates
(SN 7400). The second input is the select line. The NAND gates
select one of two one-shots (SN 74123) which in turn drive SCR's
(IR 108 BI), which drive the track switcher, which causes
feedback, etc. The purpose of the one-shots is to prevent power
from being applied (through the SCR) to a switch controller for
more than 150 mixliseconds in case a switch gets stuck and
doesn't move. A longer switching pulse could burn up the track
switches.

Once the feedback matches the set bit, the input to the
priority encoder becomes 1 and the encoder encodes the next
switch that requires resetting, when all switches on a subbank
are properxy set, the priority encoder activates its enable out
(EO) line. This is connected to the enable in (El) xine of the
next subbank and allows the switches there to be set. The
propagation of EO is prevented by any switch that does not set.
The EO xine from subbank 15 (or the last subbank) is connected
to an audio oscillator; if E015 does not come on in a short

36

37

time, an audio alarm sounds.

Finally, SPST switches lie between each XOR gate and its
priority encoder. These allow a switch to be isolated from the
controller if it gets stuck.

4.3 Other Facilities

There are several other hardware facilities that may be
used in conjunction with each computer installation. These
facilities will be described briefly since they are associated
with other applications of the computers.

4.3.1 Servo Systems

The computer system can be used to program the real time
control of a servo motor system (Experiment 3 in Appendix F).
The hardware facility includes an interface between a computer
controlled D/A converter and a servomotor. The interface
consists of three operational amplifiers that act to scale and
offset the output voltage from the D/A converter to levels
compatable with the input stage of the servomotor control unit.

There is also an interface between the output of the
reference potentiometer which monitors the output position of
the motor shaft and the A/B converter in the feedback loop. This
interface consists of two operational amplifiers that scale the
potentiometer output voltage to levels compatible with the A/D
input to the computer.

The servomotor control has a chopper-stabilized DC
amplifier that drives a power amplifier which in turn drives the
servomotor. The servo reference potentiometer is a single turn
wire wound potentiometer with a total resistance of 50 K ohms.

4.3.2 Analog C6mputers

An analog computer is available at each computer
installation. This computer can be programmed to provide a
variety of time varying input signals to the A/D inputs of the
computer. The analog computer is also used to provide signal and
impedance buffering in servomotor control studies and
applications.

The analog computers are Applied Dynamics AD-2 units that
contain 16 operational amplifiers and 4 multipliers. The
circuits are wired on patch panels that can be inserted for
specific applications. These tube based computers are designed
to provide output signals in the range of 100 volts.

37

38

4.3.3 Data Acquisition System

A simple data acquisi
"respiration" signals to the
F). This system consists
"breathing" tube. The thermis
element in a simple batt
circuit. The passage of inhal
alters the thermistor resista
the operational amplifier,
voltage potentiometer are
the A/D converter.

tion system is
computer (Exper
of a thermist
tor is connecte
ery driven op
ed and expired
nee and thus th
An on-off swi
used to control

available to provide
iment 2 in Appendix
or in a cylindrical
d as the feedback
erational amplifier
air through the tube
e output signal from
tch and an offset
the input signal to

38

39

5. DESCRIPTION OF SOFTWARE SUPPORT FACILITIES

5.1 OSWIT - Operating System With Trains

5.1.1 Introduction

The field of digital computers and their applications is
perhaps the most dynamic field in engineering at the present
time. Driving this change during the past ten years has been the
introduction and widespread acceptance of the microcomputer.
There are numerous products on the market using microcomputers,
and the future is almost limitless. At present, hov/ever,
software support for these systems lags far behind their older
and j-arger counterparts. The availability of microcomputer
operating systems is rather limited. Most present microcomputer
operating systems are not really suited to real time
applications that are forthcoming for microcomputers. During the
next decade it is important that suitable real time operating
systems be afforded the developer of microcomputer applications.

OSWIT (Operating S^ystem With Trains) is an operating system
developed at the University of Michigan to meet real time
executive system needs for the Digital Equipment Corporation
LSI-11 microcomputer. The basic features of the operating system
were designed and implemented by Jack Bonn and Ted Kowalski as
an independent study project under the direction of Professor
Richard A. Volz in the fall of 1975 and winter of 1976. During
the fall 1976, Bill Dargel was responsible for the design and
implementation of the disk controller. In addition, Kent Hoult
developed and implemented the file system while Arnold Vance
implemented the A/D and D/A drivers and train interface. In fall
of 1977, Houton Aghili completed the design and installation of
the MCP protocol between OSWIT and MTS. In fall 1977, Kent Houit
continued the development of OSWIT and the file utilities. Carol
Briggs, Mark Haynie and Glen Purdy later modified the I/O
structure to allow transmission rates of 2400 baud. Rick
Richardson modified OSWIT to support DEC compatible soft
sectored floppy disks at other locations within the University.

The basic features of the OSWIT operating system are:

1. A task scheduler which functions with a programmable
clock and asynchronous events to start tasks by
various methods subject to a specified software
priority.

2. A wait structure to allow processing and I/O
operations to proceed in parallel.

3. Input/Output device drivers for the console, A/Ds,
D/As, floppy disk, paper tape reader, and printer.

4. MCP protocol to allow the microcomputer system to

39

40

communicate with the University's central computer
system (MTS).

5. A simple command structure modelled after the Michigan
Terminal System (MTS).

6. Floppy disk file system.

7. A small set of utility routines to support arithmetic
conversions.

8. An absolute loader.

A brief overview
described in g
presented in Appe

of these features will be given here. They are
reater detail in the OSWIT user's manual,
ndix A.

5.1.2 OSWIT command language

The OSWIT command language provides the mechanism for user
communication with OSWIT. This command language is modeled after
the Michigan Terminal System command language. This command
language permits system control, program controx, a debugging
monitor, file handling and communication with MTS.

This command language also supports logical unit assignment
and pseudo device names similar to those used on MTS. Assignment
of the physical devices to logical units may be done when
program execution is initiated from the OSWIT command language
or from within an executing program.

Pseudo device names are used by OSWIT command language to
symbolically refer to physical devices in a manner similar to
file references. Pseudo devices names are provided for terminal
output and input, paper tape reader, the line printer, the A/D
and D/A converters, the train interface and a dummy file or
device.

5.1.3 OSWIT file system and utility programs

OSWIT can create, destroy, rename empty, truncate, edit,
and catalog disk files. To minimize the operating system memory
requirements, these mechanisms are provided by an OSWIT utility
program named *FILES11. OSWIT defines a fixe as a sequence of
xogical records placed in non-contiguous, 512 byte blocks on the
disk. A file cannot exceed 255 blocks.

Filenames are ximited to 10 characters or less and may
consist of any combination of printable, uppercase characters.
Any filename starting with an "*" is designated as a public file
and is usually reserved for OSWIT system files and utility
programs.

40

41

No file protection mechanism is available in OSWIT. The
WRITE ENABLE/PROTECT hardware switch is the only protection
avallable.

Other utility programs, such as *EDIT, *FILESNIFF, and
*TIME provide additional user support (see Appendix A).

5.1.4 OSWIT support functions

A number of support routines used by the operating system
to implement its functions are internal to OSWIT. These include
numerical conversions, dynamic buffer management, I/O
operations, and task scheduling. As a general principle, ail
such functions are available to user's programs at the assembly
language level via emulator trap instructions (EMTs).

5.1.5 MTS - OSWIT communications

OSWIT uses the MCP protocol {1} to communicate with MTS on
an Amdahl 470/V7. Each system is hardwired via a 1200-2400 baud
xine to a remote data concentrator, which statistically
multiplexes each input/output line with other units and
communicates with MTS through a hardwired 9600 baud line. This
connection is used principally to transfer data and programs
between MTS and the local floppy disk, or to use the system as
an "intelligent terminal". Source editing can be done locally,
transferred to MTS for assembly or compilation, linked and the
object file down loaded to be stored and executed on the
microcomputer system. Alternatively all development of user
programs can be accomplished on MTS with the final object stored
and executed locally. In addition, data may be collected and
transferred to MTS for greater storage capacity or more thorough
analysis.

5.1.6 Real time operations

According to Martin, {2} a real time computer system is one
which accepts inputs from one or more sources, acts upon these
inputs, and produces corresponding outputs fast enough to effect
the source. This definition encompasses a wide variety of
systems such as the use of a computer as a data concentrator, as
the control element in a feedback loop, as a data logger for
some real time process, or as a supervisor for a set of other
real time computers.

UM Computing Center, "An MTS Communications Protocol (MCP)
Proposal", May 1976.

Martin, James, Design of Real Time Computer Systems,
Prentice Hall.

41

42

There are two primary characteristics which distinguish
real time application from scientific computations: the need to
respond rapidly to the occurrence of events external to the
computer, and the need to handle I/O for a potentially large
number of external devices in a manner which does not lock up
the CPU during the I/O transfer. An example would be to require
a computer controlling electric power distribution to suspend
normal program operations upon detection of a generator failure
and initiate an orderly shutdown procedure for that generator
and a redistribution of the load among the remaining generators.
The consequences of these characteristics are far reaching.

5.1.6.1 Tasking

First, in order to allow the user to specify the response
to external events, he/she must be given some control over
interrupt handling. Secondly, since the computer is usually much
faster than the devices it controls or responds to, it is common
to have a single computer control a number external devices. As
a result, one usually has several more or less independent
pieces of code known as tasks which are executed at different
times. OSWIT provides a mechanism for associating a task with an
interrupt or a condition for a given external device. When an
interrupt occurs the program currently operating may be
suspended and the associated task executed. When this task is
completed, its execution is terminated and the original program
is resumed.

Associated with notion of task is that of a priority. If
two or more tasks are competing for the CPU, there must be some
mechanism for deciding which task is to execute. In OSWIT each
task is assigned a priority. Once started a task will run to
completion unless interrupted by a task with a higher priority.
If task A has priority' of 10 and is interrupted by task B with a
priority of 25, task B will execute until completion unless
interrupted by a task with a priority greater than 25. When task
E finishes, task A will resume.

OSWIT supports tasks that require synchronous timing. The
LSI-11 microcomputer hardware has a programmable real time
clock. The user can request OSWIT to set up time intervals in
the cxock and interrupt the CPU when the interval has passed.
This OSWIT facility axlows the user to specify that a task is to
be executed repeatedly at fixed intervals of time, at a certain
time of day or after some intervaj. of time.

5.1,6.2 I/O and interrupt structure

The OSWIT I/O and interrupt structure is generalized and
oriented toward real time applications. All I/O operations at
the programming level are done through logical unit assignments.
Assignment of physical devices to logical units may be done at
the time program execution is initiated or dynamically from

42

43

within the program. All I/O requests to OSWIT do an immediate
return to the calling program after the request is initiated so
that processing may be overlapped ivith I/O. If an I/O operation
must be comjiieted before the task can proceed, the task may
issue a WAIT request to OSWIT.

OSWIT supports logical record (line), byte, word and
character I/O. OSWIT also supports requests for decimal or octal
character string to binary word and binary word to decimal or
octal character string conversion.

5.2 CRASH - Compiler for Real time Applications SHop

5.2.1 Introduction

The CRASH language and compiler were developed both as a
vehicle to assist instruction in the Real Time Computer
Applications Laboratory, and as an experimental language
incorporating constructs to support real time computer
operations.

The CRASH compiler is a cross compiler which executes on
the University of Michigan's Amdahl computer. The compiler
produces LSI-11 assembly code which is then processed through a
cross assembler. The object code is then link edited on the
Amdahl and down loaded to the LSI-11.

CRASH is a block structured language and is similar in some
respects to IBM's PL/I. A number of unessential PL/I features
have been restricted, and data types and I/O statements
specifically designed for data acquisition and reax time control
activities have been added. Task scheduling and interrupt
handling constructs to facilitate real time control are also
included in CRASH.

These special structures have been added to CRASH not only
to facilitate real time programming, but also to permit better
program structure and cleaner code. Programs written in the
CRASH language may be structured according to a logical plan
with separate tasks being utilized for real time activities,
thus avoiding a clutter in the middle of the main program which
would be necessary using other programming languages. The
following section will describe the CRASH language,
concentrating on the features designed to accommodate real time
applications. A more complete description is available in
Appendix B: CRASH User's Manual.

43

44

5.2.2 Procedures

Four types of procedures are available to provide for
program structure, modularity, and ease in debugging:

EXTERNAL
INTERNAL
MAIN
TASK

The basic unit processed by the CRASH compiler is the
EXTERNAL procedure. For each EXTERNAL procedure, a separate
assembly program is produced, resulting in separate object
modules after cross-assembler processing. Object modules for
each external and library procedure in a program are linked
together using the linkage editor to produce an absolute load
module. This approach has the advantage that the whole program
need not be recompiled for a change in one procedure, thus
saving time and money in program development.

An INTERNAL procedure is one which is defined within
another procedure (either EXTERNAL or INTERNAL). Three nested
INTERNAL procedures inside an EXTERNAL procedure are allowed.
Procedure calls, however, may be nested to arbitrary depth.

A MAIN procedure is a special type of EXTERNAL procedure,
similar to a PL/I MAIN procedure. There must be one (and only
one) MAIN procedure in every program. Program execution begins
with the first executable statement in the MAIN procedure.

EXTERNAL and INTERNAL procedures may be referenced by calls
either as subroutines or as functions. Ail procedure parameter
passing is done by reference.

It is possible to write a recursive procedure by judicious
use of AUTOMATIC variables, parameters, and re-entrant code.
Return from a procedure to the calling program occurs
automatically when the end of the procedure is reached. A RETURN
statement will cause immediate return to the calling program. A
return value may be passed back to the calling program by using
a "RETURN <expression>;" statement. If a procedure is to return
a va-i-ue (as in a function call) , the procedure must be defined
to be of the data-type(see section 5.2.3 for description of
CRASH data-types) which the procedure is to return.

A special type of EXTERNAL procedure, known as a TASK may
be defined to facilitate real time operations. A TASK is an
externally defined procedure that takes no arguments, and may
return no value. TASKs are usually invoked through the use of
CRASH scheduling statements. The main difference between TASKs
and normal procedures are their ability to be invoked by a
scheduling statement, and their ability to run at a different

44

45

priority level than the invoking procedures. TASKs, scheduling
statements, and priorities are explained in section 5.2.8
(Tasking and Timing).

5.2.3 Data Types and Structures

The basic data types included in CRASH are:

INTEGER
REAL
CHARACTER
BIT
BOOLEAN
ROUTINE
TASK

The INTEGER^EAL,CHARACTER, and BIT variable types in CRASH
are roughly the same as in most other languages. Aii REAL
variables are 2 LSI-11 words (32 bits) long. INTEGER variables
occupy 1 word (16 bits) as do BIT variables, since packing of
BIT variables has not been implemented. CHARACTER variables are
of fixed maximum length from 1 to 254 bytes. BIT variables must
be declared with a field width specification (1-15), and
CHARACTER variable declarations must include a maximum length
specification (1-254). BOOLEAN variables are the same as BIT(l)
variables.

INTEGER, REAL, CHARACTER, BIT, and BOOLEAN variables may be
declared as arrays of up to 62 dimensions. Each dimension is
specified as (lower-bound: upper-bound). Negative subscripts are
allowed. The lower-bound may be omitted and defaults to zero. If

■array bounds are specified with variabxe names rather than
constants, storage allocation is postponed until run-time, thus
allowing dynamic modification of array size.

Any procedure label referred to in a program must be
declared just like any other identifier. The usual data-types
apply to procedure label declarations if a return value (of the
declared data-type) is expected.

The ROUTINE data-type is used to declare normal procedure
labels (i.e. INTERNAL or EXTERNAL procedure identifiers) where
no return value is expected.

The TASK data-type is used for declaring identifiers for
TASK type procedures. Procedures declared to be of the TASK type
also may not send return values.

A number of optional characteristics, known as attributes,
may be specified for a variable to provide great flexibility in
the use of CRASH variables.

The attributes available in CRASH are:

45

46

ANALOG
DISCRETE
LDN
DELAY
BYTE
WORD
SCALE
OFFSET

CLAMP
MAP
INTERNAL
EXTERNAL
AUTOMATIC
STATIC
GLOBAL
INITIAL

The ANALOG attribute is used with certain other attributes
to associate additional information with a REAL or INTEGER
variable. Typically variables with the ANALOG attribute are
associated with an I/O device such as one of the A/D or D/A
converters. The declaration of an ANALOG variable may include a
logical device number (LDN) through which I/O is to be
accomplished. A SCALE factor and an OFFSET to convert external
voltages to the units used in the internal representation of a
variable may be included if desired. SCALE and OFFSET are
applied as follows:

On Input:

INTERNAL_RESULT=(EXTERMAL_VALUE/SCALE)-OFFSET

On Output:

EXTERNAL RESULT=(INTERNAL VALUE+OFFSET)*SCALE

An optional be specifi
CLAMP att

is included, any a
range will caus

inste

CLAMP attribute may also
ANALOG variables to prevent wraparound. If the
(specified as (low_limit, high_limit))
to output a value outside the specified
appropriate limit value (low or high) to be output
an 8 bit D/A converter is used with low_limit=0 and high
=255 then an attempt to output any value greater than 25
cause 255 to be output instead, and an attempted output va
-10 will cause an output of 0. Without the CLAMP attribu
attempted output of 260 would result in wraparound with
analog output of 4, and an attempt to
an actual output of 245. Since it i
where 260 was intended rather than 4, the use of the
attribute with ANALOG variables is recommended when there
doubt about the range of possible output values.

output -10 would res
Since it is usually better to ha

ed for
ribute
ttempt
e the
ad. If
_limit
5 will
lue of
te an
actual
ult in
ve 255
CLAMP

is any

Variables with the DISCRETE attribute are similar to ANALOG
variables in that they may be associated with a particular
device by the use of the LDN specification. However, the
DISCRETE attribute is valid only for INTEGER variables. DISCRETE
variables are intended to be used with status or control
registerSi, where value conditioning is unnecessary but implied
I/O port reference is still convenient.

46

47

Since some devices are 8 bits wide while others are 16
bits, two attributes, BYTE (8 bits) or WORD (16 bits) are
available to indicate the number of bits to be read or written.
These attributes may be specified for any ANALOG or DISCRETE
variables and default to WORD for all variable types.

One common use of ANALOG variables is in difference
equations used to compute new values for some output variable as
in a sampled data control system. Typically in such uses, the
control formula requires a finite number of past sample values
of the ANALOG variable, as well as the current value.
Accordingly, a set of past values for each ANALOG variable may
be kept automatically by utilizing the DELAY attribute. These
past values may be referenced with the form:

- ANALOG_VAR@EXPRESSION

Where EXPRESSION is either a variable or a constant, or any
arithmetic or logical combination of them. The EXPRESSION,
called a delay indicator, is converted to an integer before
being used. If EXPRESSION=0, reference is made to the current
value. If EXPRESSIONS, reference is to the previous value, etc.
Ail references are relative to the current element, which is
updated each time an assignment is made to an ANALOG variable
without the delay indicator attached. The maximum depth of
storage of past values is declared by specifying DELAY(N) in the
declaration for ANALOG variables. N states the total number of
values to be saved, including the current value and N-l past
values. If the DELAY specification is omitted, N defaults to one
(i.e., no previous values are saved). A DELAY specification may
be included in declarations for DISCRETE variables as well,
.functioning as for ANALOG variables.

The MAP attribute provides a way to name contiguous fields
(bit-strings or character substrings) of an INTEGER or CHARACTER
variable.For each variable, up to 16 possibly overlapping fields
of any positive length may be specified. This feature enables
CRASH users to refer conveniently to specific bits or characters
by a simple identifier instead of with a field description (see
description of sub-unit selection in section 5.2.5) for every
reference to the field. The MAP attribute contributes greatly to
program readability when the programmer is using for example, a
single INTEGER variable as a sfet of control flags, or is
manipulating the various bits of the train control registers. A
complete description of the MAP attribute is given in Appendix
B: CRASH Users Manual, chapter 2.

The INTERNAL and EXTERNAL attributes are used to signify
that a procedure label rather than an ordinary variable is being
declared. The attribute must, of course, match the type
(internal or external, section 5.2.2) of the procedure whose
label is being declared. These two attributes are legal for all
data-types, except that the INTERNAL attribute is illegal for

47

48

TASKS which must be EXTERNAL.

The explanation of the AUTOMATIC, STATIC, GLOBAL and
INITIAL attributes is postponed to section 5.2.5: Storage
Allocation.

5.2.4 Run-time Variable Checking

Since program failures are often caused by out of bounds
references on arrays or delay variables, the compiler can
generate run-time bound checking for array subscripts and DELAY
variable past value indicators. This checking, which can be
selectively enabled for any or all variables, will generate a
run-time warning message or cause an interrupt with associated
special condition processing (to be described later) if an out
of bounds reference is detected. Since aii DELAY variables are
implemented as a circular list, wraparound will occur when a
DELAY variable becomes full, and the Nth pasf value will be
discarded making room for the new current value thus keeping N-l
past values and the current value available at all times. If
some action is desired after the first N samples have been,
accumulated in a DELAY variable, a DELAYFULL condition may be
specified for ANALOG or DISCRETE variables to cause an interrupt
with associated special processing when the first storage
wraparound is about to occur.

5.2.5 Storage Allocation

Three storage allocation methods for variables are
available in CRASH: AUTOMATIC (useful for recursive procedures,
or for large arrays to hold temporary results); STATIC (used
when variable contents must be preserved from one invocation of
a procedure to the next); and GLOBAL (useful for inter-procedure
communication or "common" data areas).

The way in which storage for each variable is allocated can
be controlled by the use of the AUTOMATIC, STATIC, and GLOBAL
attributes in the variable declarations. If no storage
allocation method is specified, AUTOMATIC is assumed, except
that in the MAIN procedure, STATIC is the default and is used
even if AUTOMATIC is specified.

Storage for AUTOMATIC variables is allocated dynamically
whenever the procedure in which the variable was declared is
activated, and freed for re-use when the procedure is de-
activated. If multiple activations of a single procedure exist
(this will be described later) , a separate storage area for a
given AUTOMATIC variable exists for each activation of that
procedure. This allows recursive procedures to be written.

STATIC variable storage is allocated when the program is
loaded and remains allocated when the program is exited. Even if
multiple activations of the same procedure exist, onxy one

48

49

storage area exists for a given STATIC variable declared within
that procedure. Variables should usually be declared as STATIC
since there is less processing overhead involved with allocating
and referencing them than there is with AUTOMATIC variables.

Storage for GLOBAL variables (which must be declared in the
MAIN procedure) is allocated only in the MAIN procedure, and in
the same manner as for STATIC variables. GLOBAL variables behave
exactly like STATIC variables, except that they may be
referenced by any other procedure, internal or external, in
which they are declared. All references to GLOBAL variables are
resolved by the linkage editor when one MAIN procedure and any
number of external procedures are linked into a single load
module. GLOBAL variables are mainly used when more than one
EXTERNAL procedure must reference the same data. Consider as an
example a train control program with a MAIN routine,a photocell
interrupt routine, a user console communication routine, and
other routines. In this case, the photocell interrupt routine
would need to update a train position table and the console
communication routine would need to access the same train
position table to answer train position queries from the user.
This situation is handled conveniently by declaring the train
position table as a GLOBAL variable in the MAIN routine, in the
photocell routine and in the console communication routine, thus
providing a common data area for these routines. GLOBAL
variables are also useful for communication between EXTERNAL
procedures (e.g. if more than one return value must be passed to
the caller by a subroutine, this can be done with GLOBAL
variables).

An INITIAL attribute to specify desired initial value(s)
•may be included in a declaration to provide for iniitalization
of storage. GLOBAL variables may be initialized only in the main
procedure. If the INITIAL attribute has been used for an
AUTOMATIC variable, that variable is initialized each time
storage is allocated for it.

5.2.5 Arithmetic and Logical Operations

The usual PL/I arithmetic and logical operations and order
of precedence are utilized in CRASH. Mixed mode expressions are
allowed, with conversion between data types occurring
automatically as required, except for character to numeric
conversions which must be performed explicitly with builtin
conversion subroutines (see section 5.2.10).

CRASH can also reference or assign values to individual
bits or groups of bits of INTEGER or BIT variables. This
referencing or assigning values to portions of variables is
known as sub-unit selection. Subunit selection information
(specified as [start,length] or [start] with remaining length
implied) is appended to the variable name if desired. Substring
selection on CHARACTER variables is specified in the same

49

50

manner, with characters (8 bits) rather than single bits being
selected.

5.2.7 Control Constructs

The CRASH language provides a rich variety of control
statements to facilitate structured programming. CRASH control
constructs can be classified into two general groups, DO
structures and branching structures.

The DO structures available in CRASH are:

DO; <body> END;
(simple do group)

DO control_variable=initial TO final; <body> END;
(iterated do group)

DO control_variable=initial TO final BY increment;<body>END;
(iterated do group with increment control)

DO control_variable=valuel,value2,...,vaxuen; <body> END;
(stepped do)

DO WHILE <condition>; <body> END;
(do while)

DO UNTIL <condition>; <body> END;
(do until)

DO CASE <case
expression>; <case0>;<casel>;...;<casen>; END;

(do case)

The <body> may be any CRASH statement or group of
statements including another DO construct (nesting of DO groups
to an essentially unlimited depth is legal).

The simple DO group is used whenever a sequence of
statements is to be considered as a single statement. This is
sometimes needed for IF...THEN statements (explained below) and
is also helpful to enhance program clarity using a labeled (see
below) simple do group.

The iterated DO group is used to execute the <body>
repeatedly for different values of the control_variable. Since
it is sometimes useful to perform reverse iterations, or to
increment by some value other than 1 (the default increment
value), the iterated do with increment control has been
included. Both of these DO constructs function as in PL/I.

The stepped DO is an extension of the iterated DO. In this

50

51

typ
a
ea

ype of DO group, the <body> is executed as many times as there
re values in the list, with the control_variable being set to
ach successive value in the list for successive iterations.

The DO WHILE provides repeated execution of the <body> as
long as the specified <condition> remains true. This construct
also functions as in PL/I.

The DO UNTIL construct is used to execute the <body> until
the specified condition is true. Since the <condition> is tested
after the <body> is executed, the <body> executes at least once.

The DO CASE is one of CRASH'S most powerful control
constructs, allowing the selection of one of several statements
for execution. The DO CASE could also be classified as a
branching construct, because it provides the ability to perform
an n-way branch. A 4 way branch to take care of 4 possible
interrupts is:

INTERRUPT_SERVICE: DO CASE(INTERRUPT_CODE);

/* case 0 - TTY interrupt */
TTY_INTERRUPT: CALL TTY_INT_HANDLER;

/* case 1 - paper tape reader interrupt */
PTR_INTERRUPT: CALL PAP_TAP_READ_RTM;

/* case 2 - fire alarm */
FIRE_ALARM_INTERRUPT: CALL FIRE_ALARM_HANDLER;

/* case 3 - burglar alarm */
BURG_ALARM_INTERRUPT: CALL POLICE_DIALER_RTN;

END INTERRUPT_SERVICE;

If the <case expression> evaluates to a non-existent case (e.g.
INTERRUPT_C0DE=17 in the above example), a branch to the END of
the do case is taken.

Any CRASH DO construct may be labeled like any other CRASH
statement. If a DO statement is labeled, its matching END
statement must be identically labeled. Labeling DO statements
greatly enhances program clarity, and aids the programmer in
matching DO's with END's as the CRASH compiler will check for a
label match on corresponding DO's and END's. The use of labels
is shown in the code example above.

The CRASH branching statements available are:

EXIT DC-
EXIT DO label;
NEXT DC-
NEXT DO label

51

52

GO TO label;
IF <expression> THEN <stateraent>;
IF <expression> THEN <stateinent> ELSE <statement>;

It is sometimes desirable to exit from a DO group before
its normal completion. CRASH provides the "EXIT DO;" and "EXIT
DO label;" statements to avoid the poor programming practices of
using a GO TO, or altering the control variable or <condition>
expression value. Execution of these statements causes a branch
to the first statement following the end of the current ("EXIT
DO;") or named ("EXIT DO label;") DO group.

The "NEXT DO;" and "NEXT DO label;" statements provide a
convenient means to terminate the current iteration of the
<body> and resume with the next iteration, providing that the
condition for executing the DO group is still satisfied. This
statement applies to either the current or some other named DO
group as for the "EXIT DO" statement.

A GO TO statement is included to avoid certain awkward
situations although its use is discouraged.

Two forms of the IF statement are possible in CRASH:

IF <expression> THEN <statement>;
IF <expression> THEN <statement> ELSE <statement>;

These statements function exactly as in PL/I. The use of IF
statements to structure programs, instead of the EXIT DO, NEXT
DO and GO TO statements, is encouraged as it leads to more
readable code.

5.2.8 Tasking and Timing

It is sometimes desirable to have many different activities
take place concurrently within the computer. Normal procedure
calls cause suspension of the calling program until the called
procedure has RETURNed. To facilitate real time control
activities, CRASH allows the possibility of having several
procedures active simultaneously, without requiring the
completion of one before another can execute. These special
procedures, which can be active independently of and
concurrently with other procedures, are called TASKS.

A TASK can be scheduled to execute in a variety of ways. It
can be synchronized with the clock, with the procedure that
first invoked it, or with another procedure. It may even be
scheduled to execute asynchronously when a special event or
condition occurs (triggered by some internal event such as out
of bounds array reference, by some external event such as a
photo-cej.1 connected to an interrupt port, or by T/0
completion). These special events are described in more detail

52

53

in Section 5.2.9, Interrupts and Special Processing Conditions.

Since some j
than others (e.g.,
of boiler overpre
reader) a method fo
given time is pr
priority specificat
executed. The pri
timing requirement
executed. A prior
part of a CRASH sch
from 1 to 25 0,
range. Priority 1 i
TASK. The MAIN pro
non-TASK type proce
pre-empt another
than the priority o

obs performed by TASKs may be more important
shutting down the gas supply upon detection
ssure as opposed to servicing the paper tape
r deciding which T^SK should be run at a
ovided. This is accomplished by including a
ion each time a TASK scheduling statement is
ority specifies the TASK'S importance and
s in the collection of programs being
ity is specified by including PRIO(<N>) as a
eduling statement. Where <N> is an integer
or an INTEGER variable whose va^ue is in that
s the lowest, signifying the least important
cedure and all other normal procedures (i.e.,
dures) run with a priority of 10. A TASK may
TASK or PROCEDURE if its priority is higher
f the one currently executing.

The six basic TASK scheduling statements available in CRASH
are

AT <time>
IN <time>
EVERY <time>
ON <condition>

START
START
START
START
START
CANCEL

<task>
<task>
<task>
<task>
<task>
<task>;

PRIO(n)
PRIO(n)
PRIO(n)
PRIO(n)
PRIO(n)

The <time> of the form (N units) may be specified in minutes (N
MIN), seconds (N SEC), in milliseconds (N MSEC) or in 100-
microsecond units (just N). A <time> specification may also be
an integer variable whose value is assumed to be the desired
<time> in the specified units (e.g., INT VAR MSEC).

START
<task>.

<task> will activate the TASK referred to by the name

AT <time> refers to time past midnight on the system clock
when the <task> is to be STARTed.

IN <time> refers to time from present time when the named
<task> is to be STARTed.

An EVERY statement will activate the named <task>
immediately and reactivate it every time the interval specified
by <time> has elapsed, until CANCELed.

A task may also be scheduled to START asynchronously upon
the occurrence of some special event (<condition>). These
special events are described in Section 5.2.9, Interrupts and
Special Processing Conditions.

53

54

CANCEL <task> cancels the named <task> immediately if it is
inactive, or upon completion if it is currently active (for
self-cancellation).

A LOCK statement is provided which allows a TASK to
continue execution until an UNLOCK statement is executed, or
normal execution termination occurs. This prevents other tasks
of higher priority from pre-empting the task issuing the LOCK
statement, even though some significant time, condition, or
external event may have occurred. TASKS which are unable to
begin execution immediately, or which are pre-empted TASKs are
automatically queued for execution or continuation later.

Since one may wish to start a TASK upon the occurrence of
more than one event, more than one definition of the same TASK
may occur. A method of distinguishing the occurrence of a TASK
from other suspended activations of that TASK is included.
Whenever a task is scheduled, an integer" variable must be
surrounded by parentheses and appended to the task name (e.g.,
TASKNAME(TASKID) where: TASKNAME is the name of a TASK, and
TASKID is an integer variable). The scheduler then returns a
unique identifier (in the INTEGER variable) for that particular
definition of the TASK, thereby allowing the various definitions
to be distinguished from one another. Any TASK that can execute
concurrently with itself must be made re-entrant, and must use
AUTOMATIC variables.

5.2.9 Interrupts and Special Processing Conditions

Special events that may cause a TASK to be invoked are
divided into two classes.

The first class is the internal processing event which
includes subscript ' or delay indicator range errors
(SUBSCRIPTRANGE and DELAYRANGE) or the filling of a DELAY
variable (DELAYFULL). These conditions were described in Section
5.2.6.

The second class of special events is the external event
occurrence. There are two events in this class, IO-RETURN and
INTERRUPT.

An IO-RETURN occurs when an input-output unit signals the
computer that an I/O operation has completed on a specified unit
(LDN) with a particular return code (RC). An ON IO-RETURN
(RC,LDN) statement allows scheduling of a task whenever an I/O
completion with a particular RC and LDN occurs. These return
codes can indicate error, end-of-file, end-of-disk, successful
completion, etc.

External INTERRUPTS can occur for a variety of reasons
which vary from device to device. There are usually two possible
interrupts associated with each device, A and B. When it is

S4

55

desired to start a TASK because of an interrupt, the statements:

ON INTERRUPT_A(LDN) START <tasl<> PRIO(N)
or
ON INTERRUPT_B(LDN) START <task> PRIO(N)

are used. Consult Appendix B (OSWIT User's Manual) for a
description of devices and possible interrupts associated with
them.

5.2.10 I/O Statements

CRASH supports three forms of I/O to enable the user to
communicate conveniently with various devices. The first form is
intended primarily for communicating with the console device and
human operators. A second form is used to send and receive data
from external devices such as D/A converters or train interface
control registers. The third form is used for doing record type
I/O with floppy disks, MTS, the user console, or any other
device which supports record I/O.

Since CRASH was designed for real time applications, most
of the I/O statements only start the I/O operation, thus
allowing overlap between I/O device operation and computation.
Two methods of determining when an I/O operation is complete are
provided. A WAIT statement may be used to suspend the currently
executing procedure or TASK until the I/O operation is done.
Alternately, an ON-<condition> statement can be executed to
start a TASK upon a specified return code from the operation.
This allows the TASK or procedure to continue execution
simultaneously with the I/O operation.

The first form of I/O consists of three pseudo-variables:
INPUT, CARD, and OUTPUT. INPUT and CARD may be used anywhere any
other CRASH variable may be used, except that they may not be
the object of an -assignment. The identifier INPUT is used to
read character,integer, or real constants from the console.
Whenever INPUT is referenced, one constant is read from the
console input buffer, converted to the proper data-type if
necessary, and transferred or used as specified. Some examples
of the use of INPUT:

CHAR_VAR=INPUT;
IF INPUTS STOP';
INTEGER_VAR=INPUT;

If the console input buffer is empty, the user is prompted for a
new input line. Constants may be entered several to a line,
delimited by commas or by one or more blanks.

CARD is used to read one complete line from the console
device. The user is prompted for an input line, which is read in
as one complete character string, with no conversions performed.

55

56

The use of CARD does not affect the console input buffer.

The pseudo-variable OUTPUT is used to write a line to the
system printer, usually the DEC writer console. OUTPUT behaves
exactly like a simple CHARACTER variable, except that it must
always be the destination of an assignment. No substring
selection may be performed on OUTPUT. Conversion from numeric or
bit data-types is performed automatically if necessary.

The second form of I/O is through GET and PUT statements.
The GET and PUT statements are used for communication with
external devices (e.g. A/D or D/A converters. Train control
registers, etc.). All input or output of data with GET or PUT
statements is performed by the device assigned to the LDN{s)
(described in section 5.2.3) associated with the variable(s) in
the <varlist>. The form for GET and PUT operations is:

GET <varlist>;
PUT <varlist>;

where <varlist> refers to either a single variable or a list of
variables separated by commas. The SCALE, OFFSET, and CLAMP
attributes (section 5.2.3) are applied during GET and PUT
operations. If an LDN was not specified for a variable, the
console device is used.

The third form of CRASH I/O is the GET RECORD and PUT
RECORD statements. These statements have the form:

GET RECORD(LDN) <varlist>;
PUT RECORD(LDN) <varlist>;

LDN and <varlist> are the same as in the GET and PUT statements.
Up to 255 bytes may be' transferred for each variable in a GET
RECORD or PUT RECORD statement. No conversions are performed.
The data are simply transferred byte by byte as is. These
statements merely initiate the I/O, allowing processing to
continue in parallel with I/O operations. This is the fastest
type of I/O available in CRASH, and is useful for data
buffering, such as would be needed in a data acquisition
program.

I/O operations are generally quite slow compared to CPU
operating speed. Because of this, most CRASH I/O statements only
start the I/O operation. If it is necessary to suspend
processing until the operation is complete, a WAIT statement may
be executed. The WAIT statement has the form:

WAIT FOR LDN,LDN,...;

where "LDN" is the logical device number of the device to wait
for. Execution of a WAIT statement, causes program execution to
be suspended until the specified device signals (with an

56

57

interrupt) that the I/O operation is complete.

5.2.11 Predefined Functions and Subroutines

a number of commonly used operations are available in the
form of predefined functions or subroutines. These operations
include trigonometric functions, length of character strings,
absolute value, random number generation, matrix manipulation
and conversion, character to numeric conversion and routines to
interface to the operating system for disk I/O, file
manipulation, etc. For a complete description see Appendix E:
CRASH Users Manual, chapter 11.

5.2.12 CRASH Summary

This section has provided a description of the CRASH
language, concentrating on the features unique to CRASH, and
especially on those features designed for real time
applications. For more detail on the CRASH language, or for
sample programs, refer to the CRASH MANUAL in Appendix B.

57

58

6. INSTRUCTIONAL APPLICATION OF FACILITY

6.1 Use of Facility

The electro-mechanical analog facility has been used for
instructional purposes since January, 1976. During that time
approximately 400 students have taken the course for which this
facility was developed (ECE/CICE/IOE 469, Real Time Computing
Systems). In this section we will describe the current version
of the course including the laboratory projects, evaluations of
the facility by students and staff, and indicate suggestions for
improvement. The course consists of three hours of lecture and
one three hour laboratory period each week.

6.1.1 Course Objectives and Material

The major objectives of this course are:

1. To provide experience in programming a real-time
microcomputer system that includes synchronous and asynchronous
interrupts.

2. To provide experience in the application of A/D and D/A
converters to real time problems.

3. To provide experience with practical data sampling and
frequency analysis with Fast Fourier Transforms. 30

4. To introduce basic concepts of digital process control
and its application.

5. To provide experience with distributed sensor systems in
a dynamic input-output environment.

A detailed course outline is provided in Appendix F. The
laboratory portion of the course is well-integrated with the
lectures. In addition, materiaj. specific to each laboratory
exercise is provided at the beginning of most laboratory
periods. The four projects in the laboratory are summarized
below; the experiment descriptions are given in Appendix G.

6.1.2 Standard Projects

6.1.2.1 Project 1. String Reverser

Each student is asked to write a CRASH program to accept a
character string from the Decwriter keyboard and type out that
string in reversed order. This short project is designed to
allow each student to become familiar with the CRASH language
and some features of the operating system (OSWIT). One week is
devoted to this project.

58

59

6.1.2.2 Project 2. Data Acquisition

Each student pair develop a CRASH program to sample an
analog signal and store the sampled data in a specified form on
a floppy disk file. They adapt a command handler to accept
specific command words from the keyboard (with error checking)
to specify and control the sampling process. The input signal is
a low frequency "respiration" signal that results from breathing
through a hollow tube that contains a thermister. After the data
are acquired and stored in the floppy disk file, they are copied
to a file on the central computer where a fast Fourier transform
(FFT) is performed. The transformed data can then be plotted on
a graphics terminal (Tektronix 4010) and/or listed on the system
line printer for interpretation. This project provides
experience with command handlers, data sampling and synchronous
interrupts, file-writing, and frequency domain analysis via the
FFT. Three weeks are devoted to this project.

6.1.2.3 Project 3. Servo Controller

Each student pair develops a CRASH program to control the
response of a servo motor to a step input command from the
keyboard. Two control algorithms are implemented, Proportional
Integral Derivative (PID) control, and velocity feedback
control. The amount of proportional, integral, derivative or
velocity control is specified from the keyboard as is the sample
period and the number of periods of feedback delay. One hundred
samples of the position response to a step input are stored in a
buffer. By listing or plotting the response data on the 4010
graphics terminal, the students can observe and study the servo
motor response to varying types and amounts of control,
including those combinations that result in unstable responses.
In the process they have to relate z-transform representations
of sampled data systems to the difference equations for the
controller and the plant (the servo system and its power
amplifier). Four "weeks are devoted to this project.

6.1.2.4 Project 4. Electric Train Control

Each student pair develops a data structure to describe the
layout of an N-gauge model train setup. About seventy sections
of track must be specified in such a way that power (voltage) of
correct polarity is applied to each track section in
anticipation of the movement of the engine onto that section.
The layout, shown in Appendix D, also includes 64 switches, one
crossover, one reversing loop, and 64 photocell pairs to sense
the presence or absence of the engine and associated cars. The
basic problem is to control a single engine train in response to
speed, direction and switch commands given from an analog
control box. The students have to deal with multiple
asynchronous interrupts in an electrically noisy environment.
Project options include programming for speed control on various
track sections (i.e., slowing around curves) multiple train

59

60

control, and switchyard interactions. Five weeks are allowed for
this project, which is perhaps the most complex and popular
exercise.

Each group demonstrates the program developed for each
project to the instructor who then checks for various features
and failures. A written report is submitted by each group a week
later in which the data acquired are analyzed and discussed.
Grading of the work is based both upon operability and system
design.

5.1.3 Independent Study Projects

One of the most beneficial aspects in the development of
the real time computer applications laboratory has been the
heavy involvement of undergraduate and graduate students in
independent study projects. In fact, most of the hardware and
software facilities in the laboratory were developed in this
manner. The results of these projects have been extremely
valuable to the development of the laboratory and have provided
an outstanding educational experience for the students involved.'
The students gained design and development experience they would
not normally have acquired until their first job. As a result
they not only have greater experience to carry with them to
their employers but have developed some maturity in dealing with
real projects.

Many of the projects were quite substantial and involved
more than a single student and several terms worth of work,
sometimes beginning with one set of students and ending with
another. To illustrate the sort of tasks undertaken the major
projects are listed below:

1. Design and implement a basic real time operating
system for the LSI-11 (the basis for OSWIT).

2. Design and construct a floppy disk controller for the
Memorex 651 floppy disk drive used in the laboratory.

3. Design and implement a disk file system for the floppy
disk.

4. Design and implement communications software to
support the MCP protocol for communication between the
LSI-ll's in the laboratory and the university's
central Amdahl computer.

5. Design a higher level language to support real time
control applications.

6. Implement a cross compiler for the language designed
in number 5.

6Q

61

7. Design and implement a high level debug package (RAID)
to be used with CRASH.

8. Design and implement a resident assembler (assemblies
are normally accomplished on the Amdahl computer with
the object code then downloaded to the LSI-11).

9. Design and implement a resident linkage editor for the
LSI-11.

10. Design and implement the hardware controller for the N
gauge model railroad system.

11. Implement a distributive processing system between one
of the LSI-lls and the University's Amdahl computer.

12. Study advanced control concepts with higher order
systems simulated on the analog computers.

Many of these projects were quite substantial and extended over
long periods of time. The CRASH language and compiler, for
example, were designed in a single term. Implementation,
however, extended over a two year period to achieve a reasonably
well debugged compiler.

These projects have been of great value to the
participating students. First of all the students had an
opportunity to become involved in real projects. This gave them
exposure to practical problems which they can expect to
encounter in industry. They had to work within a group of
people. There were time constraints involved. Finally, they had
the satisfaction of seeing their product actually being used by
other people. There were also substantial academic benefits as
well. First of all the experience gave them a much fuller
understanding of the basic technique they had studied during
their regular course work. Moreover, much of the software
developed was state-of-the-art. They received exposure to
advanced techniques and new ideas.

The student reaction to these projects has been excellent.
The students involved almost to a person exhibited extreme
enthusiasm for their projects and worked with a fervor I have
seldom seen in industry. In addition to producing usefu.!.
products they achieved considerable personal satisfaction.
Individual comments received from them at the completion of
their projects indicate that they felt their activities were
well worth the time spent on them.

61

62

6.2 Reaction to Use of Facility

The course based upon the real time computer applications
laboratory, CICE/ECE/IOE 469, was begun in January 1976. It has
been offered three times a year since then. The CRASH language
was introduced into the course during the fall of 1977.

Each term the department evaluates its teaching assistants
and instructional laboratories. Evaluation data on the course is
available for the fail and winter terms since 1977. Four types
of evaluation statistics have been collected: on the laboratory,
on the course comparison to other engineering courses, on the
course in comparison to other university courses, and on the
CRASH language. On the average the 469 laboratory ranked third
among laboratories.

Prior to 1^978 the College of Engineering conducted its own
course evaluations on its courses. These evaluations were on a
sdale of 0 to 4. The table below shows the three terms of
statistics available on 469 in comparison with the average
scores in the Electrical and Computer Engineering Department and'
the Computer, Information and Control Engineering Program.

Term 469
Winter 1977 3.20
Fall 1977 2.52
Winter 1978 3.17

ECE Average
2.42
2.28
2.48

CICE Average
2.67
2.63
2.49

Beginning with the Fall Term 1978 the course evaluation was
shifted to match a University-wide evaluation which is based on
a 1 to 5 point scale. During the 78-79 academic year the
evaluations were as follows:

Term

Fall 1978
Winter 1979

469

4.45
4.33

University
Median

3,
3,
.96
.85

25%
Courses
Above
Level

4.28
4.18

of

this

It seems evident from these ratings that the course based upon
this laboratory material ranked well in the upper 25% of the
courses within the University (probably at about the 15% level)
with the exception of one term. The exception occurred during
the. fall 1977 term which coincided with the introduction of the
CRASH language to the course. During this term numerous bugs
were found in the compiler and the class suffered accordingly.
In addition an attempt was made to cover both assembly language
and CRASH in the course which was too heavy a load. Note that in
the subsequent terms as CRASH continued to be used the course
evaluations rose.

62

53

During the Winter Term 1978 a student evaluation of the
CRASH language was conducted. Among the questions asked was a
comparison of CRASH and Fortran and CRASH and assembly language.
On a scale of 0 to 4, with 4 being the preference for CRASH and
0 being the preference for Fortran or assembly language. The
CRASH language received the following evaluation:

3.2 with respect to Fortran

3.3 with respect to Assembly Language

It is clear that once most of the bugs had been removed the
CRASH language was highly preferred by those who had used it.

6«2.1 Instructor's View (SLB)

I gave half the lectures and taught a laboratory section of
CICE/ECE/IOE 469 for the first time in the Spring Half-Term
1979. I am giving all the lectures and directing the laboratory
during the fall term.

The course evolved to its present form through the
dedicated efforts of Professor R. A. Volz. Several undergraduate
and graduate students have made significant contributions in
both hardware and software areas over a period of several years.
Therefore I was able to step into the course after many of the
start-up problems had been solved and the laboratory projects
were well-defined. However, I had to learn the software (CRASH),
the LSI-11 specifics, and the real time aspects of the course
essentially as a student, and without benefit of the historical
perspective gained by Professor Volz.

I believe the course to be one of the best offerings
available to students with computer and control interests. The
course combines elements of software (languages and programming)
with hardware (sampling, conversion, logic design) and control
(sampled data systems, stability, types of control) from a users
point of view. Thus each student must combine and use computer
and engineering skills in creative and practical ways. In
general I believe that the course is excellent.

There is a high level of student interest in the course as
indicated by the fact that the course fills up so fast that many
(30-40) students end up on the "wait" list each term. This is
particularly impressive since the course has a reputation for
being very time consuming and although 4 credit hours are given
it is considered as the equivalent of a 5 or 6 credit course.

63

64

Unfortunately because of the high demands placed on the students
the attrition throughout the term may be as high as 20%. This
term we have lost about 10-12 students from an initial group of
65.

The problems associated with the course fall into two major
categories, laboratory facilities and curricular. The facilties
problems will be discussed first.

5.2.1.1 Facilities Problems

The laboratory facilities are limited to 3 LSI-11 based
setups. Each student is enrolled in a laboratory section that
meets formally for a 3 hour period each week. There are 13
students in each laboratory section at the beginning of the term
and 10-11 by the end of the term. The students work in groups of
two or three (occasionally). Each student can gain access to the
laboratory at other times through about 10 hours' of laboratory
instructors office hours outside of " regularly scheduled
laboratory periods. Furthermore, if they pass a "key" test they
can obtain a key to the laboratory for evening and weekend
access. However, even with all this apparent access to the
laboratory facilities, the class enrollment is so big that the
students have difficulty in "getting on the machines",
particularly near the project demonstration deadlines.
Furthermore, the intensive use leads to increased equipment
malfunction and student frustration. The solutions are obvious:
reduce the number of students or increase the number of set-ups.
Unfortunately space and financial considerations have made it
difficult to increase the facilities and the pent-up demand has
made it impossible to reduce the enrollment.

Each laboratory section is reasonably well equipped to
handle 9-10 students working in pairs which seems to indicate a
total course enrollment of about 40. The current large
laboratory sections make it difficult for the instructor to
service all the programming and operational problems that occur,
particularly at the beginning of the terra.

The train set-up has problems. An N-gauge system is clearly
an appropriate choice in terms of the size required for a
reasonably challenging train control exercise. However, the
actual components for N-gauge systems leave a lot to be desired.
The track sections do not match well which leads to derailment
problems. The track must be cleaned often to reduce the contact
resistance to the engines. The switches are not well made and
thus have to be adjusted often to make them work. The engines
are not particularly reliable in an intensive use situation. The
net result is that the train set-up must be prepared and tested
before each demonstration and at various intervals during the
duration of the train experiment. Unfortunately there is no
obvious solution to these problems except to move to a larger
guage system which would be very costly in construction time and

64

65

would require a significantly larger area for the layout.

The connection of each set-up to the central computing
J-ita concentrator works very well.

y
"central" computer

6.2.1.2 Curricular Problems

Perhaps the most significant problems with the course are
in the curricular area. The normal prerequisite for the course
is a course in Fortran and junior standing. However, the course
is also taken by advanced graduate students. Therefore, at any
given time the class consists of students who are both naive and
sophisticated in their software, hardware, and systems
background. The spread of backgrounds is so broad as to
compromise the teaching and learning situation. The naive
student is introduced to new material on a continuing basis
whereas the sophisticated student may already have had major
portions of the lecture material in other courses. There will
continue to be problems of this type as long as a single course
if offered. However, the prerequisite should be changed to
indicate the necessity for more background and maturity than is
presently required. I have attempted to handle this problem by
warning the naive students on the first day of class concerning
the course content and "real" prerequisites. Essentially each
student should have taken at least one out of 5 or 6 other
computer, mathematics or systems courses that provide background
or lecture level material for this course. Then the amount of
new material would be manageable for the less well prepared
students.

The wide differences in background make the presentation
and selection of the lecture material difficult. It is almost
impossible to avoid "snowing" one group of students and boring
another group with the same material in many cases. To some
extent almost everyone is "snowed" or "bored" at some time
during the course depending on their backgrounds. Perhaps this
will always be the case in any course that tends to put together
a wide variety of techniques to solve a relatively broad base of
problems.

A reasonable solution would be to offer a two course
sequence, each with a laboratory. The first course would be
aimed at the "naive" student with perhaps only the present
Fortran prerequiste. The lecture material would concentrate on

65

66

the CRASH language and simple concepts of data sampling and
conversion. The second course would cover details of real time
programming and control as well as more advanced material on
data sampling, conversion, sampled data systems and asynchronous
control. Computer to computer communication and interfacing
would also be covered from theoretical and practical points of
view. The first course or background in structured programming
and PL/1 or PL/C and at least senior standing would be an
appropriate background for the second course.

Again, the major limitations in effecting any changes here
are lack of availability of staff and funds.

6.2.1.3 Textbook Problem

There is no adequate textbook for this course. The
practical approach taken to the implementation of real time
computer control has forced the presentation of a' set of topics
that are not covered in any single text. The CRASH language and
OSWIT operating system are described in manuals not specifically
designed as teaching material. They contain few useful examples
and are more in the nature of a catalog of what is available.
Also they are specific to LSI-11 based systems in communication
with MTS. The other lecture material is generally basic material
from several major areas that are not treated in any single
text. Finally, the specifics of the LSI-11 and how it is
connected in our laboratory can be found only in the Digital
Equipment Microcomputer Handbook or in assorted circuit
schematics. Presumably much of the material developed for this
report will become availble for student use in the near term.
However, it would have to be revised somewhat before being given
to the students.

The volume of unpublished material distributed in this
course is immense. In addition to the CRASH and OSWIT manuals
the lectures are distributed in advance so that the students do
not have to copy large amounts of information from the
blackboard. Hopefully, this allows them to concentrate on
understanding the material presented rather than on transcribing
it. Unfortunately, some students depend on the written lectures
rather than attend class. However, students who already know the
material presented in a particular area may actually be able to
use the lecture time more profitably for other endeavors.

6.2.1.4 Conclusion

The evaluation and course details provided here may help to
place the electro-mechanical analog facility in its educational
context. I have enjoyed the learning and teaching experience
associated with the 469 course. It has helped me to appreciate
the many problems associated with computer based real time
control and some of the methods for solution.

66

67

6.2.2 Students' Views

Individuaj. student reactions to the laboratory and course
have varied widely according to the background of students
taking the course and the administrative conditions under which
the course has been offered. It has been necessary to allow 60
people in the class at one time even though there are only three
laboratory setups. Even with this course loading, it has been
necessary to turn away a substantial number of people each term.
In the following sections, views from individual students with
both favorable and unfavorable reactions to the class are
presented.

5.2.2.1 View 1 - - Jack Wenstrand

CICE 469 is a course in the application of real time
computer systems. It is described in the College of Engineering
Bulletin as :

Principles of application of real time computer systems to
engineering problems. Topics include: computer
characteristics needed for real time use, mini/micro
computer operating systems, man-computer communication,
basic digital logic design, analog signal processing and
conversion, and inter-computer communication. Topics
investigated via laboratory using microprocessor system.

My background coming into this course included one semester of
structured programming, and a semester of circuit analysis. This
should be a minimum requirement for the course. I was able to
understand the material presented in the course, but everything
was new to me. I found the course to be interesting,
informative, worthwhile, and very difficult.

The lecture opened with an introduction to real time
computing. Here the traumatic notion that a computer program
need not execute in the same sequential order in which it was
typed first entered my sophomoric mind. Approximately the next
two weeks were spent easing me past this critical moment as the
CRASH compilers were thoroughly discussed in class and the
concepts behind the real time functions that it implemented.
This discussion was important, as many of the students in the
class had no background in real time operations.

At this point, the language itself merits a few words. The
CRASH language was a valuable tool in the laboratory. A high
level language much like PL/1, it enabled many students with
limited programming experience to construct fairly complex real
time application programs. If the same programs were to be
implemented on the assembly language level, a much stronger
programming background would be required to make it through the
course. The main drawback to the language was that the compiler
still had some bugs. If you hit one of those bugs, and CRASH

67

68

produced code that would not execute, you had little recourse
but to restructure the code and try again. The course would not
have been possible for me without CRASH. It was sometimes rather
frustrating, but definitely necessary.

The next topic covered was the LSI-11 computer itself:
everything from bus structure to memory mapped I/O. Special
attention was devoted to the interrupt structure. This was
important because the major part of real time computing is
processing interrupts. The discussion of I/O was also very
appropriate, helping us to understand how real information in
the real world can be converted to and from the binary bit
patterns that the computer crunches.

The next topic considered was that of digital to analog and
analog to digital conversion. This was approached, as it must
be, from a circuit analysis point of view. After a brief
introduction to op-amps, we were quickly pushed " through D/A
converters and on through successive approximation A/D
converters. Some of the more software oriented people in the
class found all this rather difficult, but to me it was
fascinating.

Then came sampling theory. These lectures were the basis
for the first major lab experiment. The Fourier Transform
methods and results of its numerical implementation were
covered, including the effects of sample rate on results,
aliasing, and use of filters to improve results.

There was no break in this course — the material just kept
coming. Next, the professor dove right in to control theory.
Wait a minute! What's a Z-transform? This section of the course
was probably the most difficult for me to understand. The whole
concept was completely new to me, and I think the same was true
for the rest of the class. Perhaps a little more time could have
been spent here. While this was going on, we were working on a
servo controller in the lab. This was helpful from the
standpoint of allowing us to test some of the concepts that we
learning in lecture.

Computer-computer communications was another very
interesting topic that was covered in this course. I am glad
that that was in the course, as it is becoming more and more
important as the trend towards digital signal processing grows.
Topics discussed included requirements for a data communications
protocol, a couple of protocols now in use, and noise and error
detection/correction considerations.

The lectures concluded with a survey of microcomputers now
on the market. Costs, features, and capabilities were compared
and contrasted. As cost is such an important factor in any real
world application, the course would not have been complete
without this section. The lecture encompassed all of the topics

68

69

necessary as a basis for real time systems design. Each of the
different subject areas was covered in sufficient depth to be of
practical value. All of the topics were important to the course,
and I hope that none of them will be omitted in the future. The
lab and the lecture were very well coordinated, each re-
enforcing the other.

The first lab project was a simple problem which served to
introduce the class to CRASH. We were to program the LSI-11 to
input a string from the terminal, reverse it, and output it to
the terminal.

Our next assignment was to write a general command handier.
The command handler was necessary as the following experiments
were to be command driven. This project had its good points and
its bad points. Writing the command handler required a lot of
time, especially for those with minimal programming experience,
and has no direct relation to real time. On the other side of
the coin, the experience forced people to familiarize themselves
with CRASH before entangling themselves' with new real time
concepts and constructs. I feel that the project was worthwhile,
but could probably better be replaced by another real time
experiment.

The next experiment involved synchronous sampling of data
and analysis of that data. The hardware included essentially a
thermister wired through an op-amp to a A/D converter. This
provided us with an eight bit number proportional to the
thermister temperature. We generated the waveform for sampling
by breathing on the thermister. We were to record a specific
number of bytes on our floppy disk in a very specific format.
Also required was a routine to unpack the data bytes and print
them out. After taking a data set, it could then be transferred
to MTS where a fast Fourier transform program was available for
our use. This allowed us to verify rather easily the sampling
theory basics-that we were learning in lecture. The fast Fourier
transform was definitely a nice tool to use as it simplified the
data analysis. However, in order to use the program we had to
pack the bytes in to the disk file in a very specific manner.
This part of the experiment is probably what caused the greatest
amount of trouble, particularly to those without much
programming experience, and again this was not directly related
to real time computing. This experiment could be improved by
modifying the fast Fourier transform program to accept one data
point per 16 bit word, instead of one data point per byte as it
does now. While this does waste a little space, it greatly
simplifies the packing and unpacking of data points.

The third project was to implement two algorithms to
control a servo. One was a velocity feedback controller, and the
other was a proportional integral derivative controller. We were
given equations for both controllers in forms suitable for
implementation. That was good, in that most people in the class

69

70

did not have a sufficient comprehension of control theory to
come up with the equations themselves. This experiment also re-
enforced the lecture material by verifying such facts as a large
integral term will make the PID controller unstable.

The last experiment was the one that everyone was waiting
for. The idea of using an electric train for a lab project on
handling asynchronous interrupts must have been a stroke of
genius! The train attracts interest to the course, helps to keep
the students interested, and is a perfect example of a case
where priority handling of asynchronous interrupts is necessary.
The experiment was by far the most difficult of the term,
primarily because the class was on its own. We were given
specifics on the train board I/O and a couple suggestions on
what our data structure (which had to represent the train board
to the computer) should contain, and that was it. It was a good
project — it really made me think.

The lab was an essential part of the course. While the
lecture was covering sampling and control theory, which seemed
more than a little abstract to me, the lab served to force me to
relate these concepts to the actual processing that I had
programmed the LSI-11 to do. The success of the lab was rather
dependent upon the teaching assistant. As each of the problems
was an introduction to a different area, the class required a
number of specific suggestions of methods of approach to
complete the projects. The dependence on the teaching assistant
could be reduced by including more details in the write-up that
is handed out for each experiment, and by devoting a lecture
period to each lab or scheduling some extra class periods for
that purpose.

The lab facilities were good. CRASH, as mentioned before,
had some bugs, but it was definitely better than the assembly
language alternative. The hardware was reliable. The train board
was subject to noise, leading to some false interrupts. However,
such is the case for real world systems also, so the experience
of trying to program around the false interrupts was a good one.
The one thing that could have been improved was availability.
There were three LSI-lls and only one train board. With the
amount of time and work that has gone in to that train board, I
understand why they don't have two, though. Access to the train
was a problem at the end of the term. Members of the class were
given keys to the lab after passing a "key test." That allowed
students 24 hour a day access to the lab, which made all but the
last week very acceptable.

This course does not replace a control theory class, a
sampling theory class, a circuits class, and all of the math
necessarily prerequisite to those classes. However, it does
allow a person, after one long, hard term, to be well versed as
to the capabilities of real time systems, and techniques for
programming them. Looking back on the course, I am still amazed

70

71

by the quantity of material covered. I have never had a class,
before or since, in which I learned so much, so fast. The course
was excellent. All college classes should be like CICE 469.

6.2.2.2 View 2 - - Richard Jungclas

The real time computing course has been successful in
meeting the goals specified in previous sections and the
expectation of students. One of the most significant aspects of
the course is the real world interaction of computers and
physical devices. In most college computer courses, the computer
programs developed by the class consist of some contrived
results from simulator and test data. In this course, the
computer program has a casual relationship with sensing and
controlling a physical device such as the servo or the trains.
Although computer interaction and manifestation might be seen in
printed results from simulations, having these interactions and
manifestations occur physically imprints these interactions in
student's mind.

6.2.2.3 View 3 - - Terry Rosenbaum

My reaction to the use of the train lab facilities was
generally unfavorable. My reactions can be broken down into
three categories: my reaction to the hardware facilities, my
reaction to the software facilities, and my reaction to the real
time programming class.

The hardware facilities are over used. This leads to two
problems. The first problem is breakdowns. The LSI-lls,
Decwriters, and floppy disks generally function quite well in
spite of their heavy use. The "breath tube" peripheral also
seemed to function well. The servo mechanisms seemed to break
down occasionally, thus increasing the load on the remaining
units. The problems I experienced with the train were non-
functioning photocell sensors, worn out rolling stock and
various problems with the tracks. The non-functioning photocells
introduced an unnecessary obstacle into train control
programming. The worn out engines, cars and tracks made program
testing difficult. Engines would sometimes stall or not start
when power was applied. Cars would come unattached from the
engines due to worn or broken couplers. Poorly aligned or worn
out tracks caused train derailments. All these things detracted
from the excitement of controlling the train by computer,
thereby lessening student enjoyment and satisfaction with the
experiment, and giving rise to a certain amount of frustration
and subsequent drop in motivation. This problem could be
corrected with increased maintenance.

The other problem with overuse of the facilities is the
amount of time available to students for program testing. The
high usage necessitates round the clock sessions at the end of
the term. This overtires the students thereby lessening their

71

72

efficiency and reducing their chances of success. Also, the
amount of debugging time available is just not enough, as is
evidenced by the low rate of success on the train program. Most
students have their programs partially working, but few are
really satisfied with their final result. The solution to this
problem is obvious, and extremely expensive—purchase more
equipment. I have another suggestion to alleviate this problem
through restructuring of the course. This suggestion will be
covered in the section on suggested improvements.

There were two main problems with the software reliability
and documentation. All software seemed reasonably reliable with
the exception of the CRASH compiler. A number of bugs existed in
the compiler, and some of these compiler bugs caused erratic
program operation not attributable to source code errors.
Subsequent work on CRASH by me has removed many of these bugs,
however, and this problem should be eliminated in the future.

The problems with documentation were the lack of a good
operating manual for OSWIT, and some rather poor explanations in
the CRASH manual. An OSWIT manual has been written which should
alleviate the first problem. The CRASH manual which exists needs
work. Perhaps this would be a good project for a technical
writing class in the Engineering Humanities Department. Since
all engineering students are required to take technical writing,
it seems feasible to set up a section of 469 which would operate
jointly as a technical writing class to attempt to rewrite the
CRASH user's manual.

The problems I experienced with 469 were due to my
programming background, and to the overly large number of
students in the class. Since I had already taken many computer
courses including operating systems design and compiler design,
some of the program assignments were a bit underchallenging. The
large number of persons in the class led to overcrowding in the
lab, and caused the overuse problem explained earlier.

I feel that my most rewarding experiences with the train
lab came not through the 469 class, but through my summer
independent study project debugging the CRASH compiler, and my
subsequent involvement in this documentation project.

Debugging CRASH provided me with experience in large scale
program debugging, and greatly increased my understanding of
compiler operation in general. My involvement in the writing of
this document has helped to develop my technical writing skills,
skills which are very important for engineers to possess. While
neither of these benefits are directly related to real time
programming, my work on CRASH did help to increase my
understanding of real time operations.

I will now suggest some improvements which could be made to
the train lab facility and to the 469 class. My suggestions for

72

73

improvement can also be broken down into three categories:
possible improvements to the hardware facilities, possible
improvements to the software facilities, and possible
improvements to the 469 class.

For the hardware facilities, I would recommend better
maintenance procedures. A maintenance schedule should be
developed if one does not exist. Programs could be written to
verify the operation of the train board sensors, switches, servo
systems, etc. These programs should be run at regular intervals
(perhaps daily during period of heavy use) and any bugs
discovered should be corrected promptly. This would greatly
increase the likelihood that all equipment is properly
functioning and available for student use. I would also
recommend the purchase of additional LSI-lls if funds, space,
etc. could be found. This would help to alleviate the
overcrowding in the lab.

While the CRASH compiler has been improved considerably
already, there is still room for more improvement. The main
problem in CRASH is stack depth checking. The LSI-11 stack is
heavily utilized by CRASH programs, and stack overflows often
cause erratic program operation or abnormal termination. The
compiler should be modified to keep better track of stack depth
during compilation, thus enabling detection of stack overflows
during run time checks. Currently, the stack is often used
(especially during calls to system subroutines) without upping
the maximum stack depth counter (done by calling the "PUSH"
subroutine). This leads to a situation whereby it is possible to
overwrite the stack into the buffer region without a stack
overflow being detected (because the maximum stack depth being
tested against was incorrect (too low)). This causes unexplained
.program failure.

The BIT variable parameter size feature is not properly
implemented. Currently, all BIT variable parameters must be
treated as integers, because the proper field width is not
passed as a part of the procedure call (this should be changed).

A possible extension to CRASH would be the implementation
of TRAIN control primitive statements. This would tend to
standardize train control I/O somewhat, thus aiding in debugging
train control programs. The operating system, OSWIT, could be
improved by the addition of better error diagnostics. Currently,
error messages are very short and undescriptive. About all that
a user knows after receiving an OSWIT error message is that the
program bombed. More descriptive error messages would certainly
aid in debugging programs. Also, a real time assembly language
debugger is needed. The current assembly language debugger runs
with interrupts off, limiting its usefulness. Perhaps assembly
language debugging features could be added to RAID.

To alleviate the problems with the 469 class which I

73

74

described earlier, I would recommend restructuring the class.
Due to the fact that the field of real time computing has
expanded greatly in the past few years, I think that a one term
long 469 class inadequately covers the subject of real time
computing.

I think that the class should be split into two one term
classes. The first term would introduce the student to the
software used in the real time laboratory, and introduce the
student to real time operations, concentrating on data
acquisition, D/A and A/D converters and on elementary control
problems such as the servo control experiment. This would give
the students a more thorough understanding of D/A and A/D
converters, and allow more time for learning about the software
facilities in the lab before tackling more complex problems.

The second course could be a more advanced course covering
interrupt programming, other types of control interfaces
(parallel I/O, modems, etc.) real time operating systems
(perhaps a short survey of what is available in the industry
today), data communications (a very important part of
distributed sensor systems), and ultimately the train control
problem.

This restructuring would of course require the purchase of
additional equipment (two to four more LSI-11 setups), personnel
expenditures for development and instruction, and probably
additional lab space. I also have some ideas for new experiments
which would possibly be designed: a sound processing experiment;
a sound or light tracking device (an extension of the servo
control experiment to make it do something useful); an acid
titration control experiment; a transistor curve tracing
experiment; a logic device tester/identifier; capacitor and
resistor value measuring experiment.

Some of these experiments could be implemented with minimal
cost, while other would probably be very costly and time
consuming to develop. The division of real time computer
instruction into two courses combined with the implementation of
new experiments (both to fill in the lab schedule and to be
offered as alternatives with the student choosing the more
appealing of say two or three experiments) would definitely make
the course more interesting, more challenging, and able to offer
students a more complete background in real time computing.

As for the problem of overcrowding in the labs, the
division of the course may help to alleviate this problem too,
although this is not certain. A less ambitious experiment
schedule in the introductory course would allow more time for
each experiment, hopefully alleviating the problem of not enough
"hands-on" time for each student. Although it is a difficult
decision to make, perhaps it would be necessary to set somewhat
more realistic enrollment levels than exist at the present time.

74

75

At any rate, the problem of access to the train setup would be
greatly reduced, both by the fact that there would be more time
available for this experiment, and by the fact that due to
natural selection process, there would probably be less students
(at least less half interested and under motivated ones) in the
advanced course.With more time available to students in the
advanced for working on the train setup, the success rate should
rise considerably, as would student satisfaction with this
experiment.

I must temper the negativism of my views by adding that my
position clearly represents the minority viewpoint. The CICE-469
class has fullfilled its objectives for providing students with
a sound background in real time operations (and even surpassed
them). If given a choice between having the course as it exists
now, or not having it at all, I would have to choose the former.
Also, I must add that I have nothing but the highest respect for
the ingenuity and years of labor which have gone into the
devexopment and implementation of the lab facility and the
course.

75

76

7. SPECULATION ON OTHER APPLICATIONS

7.1 Software Validation

Among the suggestions for use of the computer controlled
train facility is the validation of certain software systems.
Chuvala and Beck [1] have expressed a strong interest in
facilities for validating large complex software systems. The
discussion in this section is speculation as to what might be
done. It in no way represents the results of extensive research,
nor do the authors necessarily advocate the ideas discussed.
Rather the discussion is somewhat in the nature of a
brainstorming session to try to determine if there are areas in
which the basic structure provided by the train system might be
of use.

7.1.1 Software Engineering

The development of reliable computer software in a timely
fashion at reasonable cost is one of the most significant
unresolved problems in the computer area today. Software
projects are almost always late, over cost budget and seldom
match the original specifications. Moreover, software products
are generally laden with errors that appear only after use has
begun, resulting in a long drawn out and expensive maintenance
operations.

Software engineering refers to a collection of techniques
developed and still being developed to help alleviate these
problems. The software engineering techniques addressed the
following aspects of software development

1. validity—does the program function properly?

2. performance—measured in terms of execution time and
storage size required.

3. software architecture—the organization and structure
of the software system.

4. ease of use—the human engineering aspects of the
software.

5. maintainability—how readily can the program be
changed without introducing new errors in other parts
of the program

6. cost—how to estimate development costs beforehand and
control them during development.

The life cycle of a software product must be considered in
addressing these issues. Most of these issues must be considered

76

77

across most if not all phases of this cycle. Only by considering
this entire life cycle can one hope to adequately manage the
software development problem.

The software life cycle can be divided into the following
phases:

1. functional requirement specification and analysis

2. development of software specifications

3. software design

4. software implementation

5. validation

6. operation and maintenance.

The particular concern here is software validation even
though this item is a separate phase in the life cycle of
software. As pointed out by Ho [2] it is an issue which must be
considered throughout the design and implementation phases as
well. Ho points out that approximately 2/3 of the software
errors are design errors. Furthermore, design errors are much
more difficult to find and correct than are implementation
errors.

There are typically three basic approaches to program
validation: testing, program proving, and automated aids. Of
these, the first and the third are by far the most widely used.
Program proving techniques typically involve the development of
a set of input and output assertions such that if the input
satisfies the input assertion and the program terminates the
output satisfies the output assertion. Automated theorem proving
techniques are then used to verify the relation between the
input and output assertions. In spite of much work on these
techniques, such as the work by Stavely [3] which uses modular
code structure, and higher level assertion languages to reduce
the difficulty of these techniques, validation of software by
program proving techniques is still a very complex problem. It
is generally not feasible to use them with large complex pieces
of software.

Testing forms a basis for almost all real software
validation work. In fact, after a piece of complex software is
put into operation the technique continues, with the users as
the testers of the system. The errors they find become a large
part of the maintenance of the software product. Since
exhaustive testing is not typically feasible one of the major
issues in testing software is the determination of a suitable
set of test inputs. A number of techniques for selection of
inputs have been made (see Ho [3] for a good summary of these)

77

78

including the development of formal criteria (such as forcing
all program branches to be taken, Huang [4]), or that all
statements be executed. However, the most common method of
selecting tests is functional testing in which one identifies
sufficient input to test the major functional activities of the
product. For example, Goodenough and Gerhard [5] propose a
methodology for selection of a test based upon decision table
techniques.

Every programmer uses a variety of automotive static and
dynamic testing aids whether he realizes it or not. All
compilers and assemblers, for example, have some level of error
detection built into them for at least proper syntax. Other
checks commonly found are for matching types, undefined
variables, etc. Dynamic analysis usually includes run time error
checking with programs. This may include numeric, arithmetic
anomalies (such as divide by zero) or may extend to address
checks on data references, subscript range checking on array
variables, etc. Unassisted automatic aids, however, are not yet
capable of completely validating complex software. This
condition will remain for the foreseeable future, since
automated aids do not usually contain formalized descriptions of
systems requirements and therefore cannot possibly verify the
behavior of a program against its requirements.

Another area which may offer some potential for assistance
is software simulation. By use of simulation it may be possible
to model the system throughout its development and verify at
each stage that the specification performance requirements are
met. Relatively little work, however, has been done in this area
(for example see Rowe [6] or Berger [7]).

7.1.2 Possible Areas of Train Utility

With this introduction to the validation problems of
software engineering let us consider possible areas in which the
train system might be of assistance. It is clear that there are
some areas where the train is highly unlikely to be of any
utility, such as in the validation of numeric computations. On
the other hand there are areas where the visualization provided
by the train system may be of assistance in software validation.

Perhaps the most obvious point to consider is program
control flow. It is well known that control flow programs can be
represented as graphs with nodes representing program statements
and arcs representing flow between statements. Similarly the
train layout can be represented as a graph. If the underlying
graphs were identical, then the train layout would have the
potential to represent control flow in a program.

It is also possible to consider modeling the
tasking. Essentially one could have one i

control flow
for tasking. Essentially one could have one engine for each
task. Engines would stop and start as they are removed and

78

79

inserted to execution.

Though in general it does not seem possible to represent
all operations by the train system there are some situations in
which it is at least conceivable that something could be
accomplished. First of all, I/O operations could be represented
by the pickup and/or release of cars from sidings. Similarly
different types of cars or coded cars might represent data
types. The use of a train facility to represent queuing
operations would be perhaps somewhat more realistic. Many large
systems programming activities involve a number of queues with
different strategies for managing them. Queues represented by
cars on the railroad could provide an effective visualization of
queuing operations.

7.1.3 Program to Train Coupling

The previous section describes some potential areas for use
of the train in software validation. These were presented,
however, only at the logical level. In order to actually benefit
from such a system there must be a mapping from the program to
the train. The program does in fact include mechanisms for
operating the train. Even for an idea which seemed logically
attractive if there were no mechanism for implementing the train
control the idea would be of little value. This section
identifies briefly some potential methods for control of the
train which will be discussed further.

Most simply one could write a simulation of the program as
a separate entity in which the train represented those aspects
under study. At the other extreme one could envision modifying
the compilers or interpreters used to automatically generate
calls to drive the train. A third possibility would be to have
the user insert the desired calls at run time through a suitable
simulation package which has been appropriately augmented with
train control ■ functions and a macro facility.

These ideas will be explored a bit further in a subsequent
section.

7'1«4 Potential Logical Relations Between Programs and a Train
System

This section is concerned with potential logical relations
between programming considerations and a computer controlled
train system. It is not concerned at this point with physical
implementation of that connection. This will be considered in
the next section. Rather it is concerned with exploring the
potential usefulness of such studies should physical
implementation prove feasible.

79

80

7.1.4.1 Control Flow

As noted above the most obvious corr
program and the computer controlled model
be represented as a graph. Truly then if
are identical there can be a correspondenc
and the train. This suggests that one migh
control flow with the procession through
the program being represented by movement
the corresponding track. Furthermore, it 1
multitasking with multiple trains, one for

espondence between a
train is that both can
the underlying graphs

e between the program
t try to model program
the execution path of

of the train across
s possible to consider
each execution path.

Although it is clear that both the program and control flow
and the train can be represented by an underlying graph which
could in many cases be identical, it is nevertheless useful to
look in greater detail at the recommended systems they would
represent. In the following sections the various types of
program control constructs will be examined.

7.1.4.2 Sequential Code Block

The most fundamental code structure is that of a sequential
stream of instructions. This can be represented on a train
layout as a section of track with no switches or crossovers, as
shown in Figure 15. Photocells at various points along the track
can be used to represent either individual statements or blocks
of statements, i.e., when the train reaches a particular
photocell, completion of the corresponding code block is
indicated.

O o

photocells representing
program statements

Figure 15. Representation of Sequential Instructions

7.1.4.3 Do Loops

There are several forms of do loops used in programming
languages. The oldest is the do with iteration count. More
recently do until and do while loops have become prevalent.
Figure 16 illustrates a possible correspondence between loop
program structures and the train layout. Figure 16 A illustrates
a do until loop. Note that the code block is always executed

80

81

once. Figure 16 B illustrates a DO WHILE loop. Notice that in
this case the code block is in the return loop and may or may
not be executed depending upon the test condition performed
before entry to the switch configuration. A do with
count could be represented by the same layout as
loop.

iteration
a do until

Figure 16 C represents a multi-purpose loop block which
could represent either a do until or a do while loop depending
upon where one presumes code of the loop to be represented.
Photocells represent statements in both the forward and return
loop. It would be possible to represent each variety of loop as
being considered by using auxiliary light on the layout to
indicate the active (those that refer to actual facts of code)
photocells.

Figure 16. Correspondence Between Do Loop and Train Layout

81

82

7.1.4.4 If.. .Then...Else

The If.. .Then...Else struc
in . a manner similar to tha
illustrates an If...Then operat
an If...Then...Else. It is pres
prior to reaching the switch,
condition the switch can be thr
resulting in either the Then
was true, or bypassed if the
distinction between the If.
this representation is whether
for the Else clause. This can
shown in Figure 17.

ture can be handled with switches
t used for loops. Figure 17 A
ion while Figure 17B represents
umed that the condition is tested
Depending upon the result of the
own either straight or turned
cause being done if the condition
condition was false. The only
.Then and the If...Then...Else in
or not there is a block of code
be generalized as was the do loop

condition
 «—>
tests

THEN
code
block

condition

tests

THEN
code
block ELSE

code
block

Fiqure 17. Correspondence Between If...Then,
Train Layout

.Else Clause and

82

83

7.1.4.5 Go To

The Go To construct is simply a transfer from one stream of
operations into another. Tt is represented simply as an inbound
branch to another section of the track. This is illustrated in
Figure 13 A.

A computed Go To is similar except that in the main stream
of code one encounters a sequence of switches each of which
branches to an inbound switch in another section of the track
layout. This is illustrated in Figure 13 B.

i

computed
GO TO
check

A

B

Figure 18. Correspondence Between GOTOs and Train Layout

7.1.4.6 Procedure Calls

A procedure call is basically a transfer to another block
of code with a return upon completion of that block of code. The
critical component here is that the procedure may be entered
from several different places with an appropriate return being
made. A representation of this is illustrated in Figure 19. The
entry to the subroutine is simply a series of inbound switches
to a block of code with their return being a series of outbound
switches. The control computer must of course keep track of the

83

84

appropriate inbound and outbound switches so that a proper
return is made. This is basically no different than managing
subroutine returned within a procedure.

Figure 19. Correspodence Between Procedure Calls and Train
Layout

7.1.4.7 Interrupts

The handling of interrupts and execution of a new task of
code is managed by using multiple engines on the layout.
Essentially one engine is present for each task. When an
interrupt occurs the running train is stopped and a new engine
corresponding to the new task is started. When the second engine
either completes its traversal through the appropriate portion
of the train layout (or is timed out) it is stopped and the
original engine begins operation again. This is illustrated
statically in Figure 20.

7.1.4.8 Operations

While there appears to be reasonably logical correspondence
between control flow in a program and a track layout, any
correspondence between noncontrol operations and the train is
far less apparent. In fact some operations may not be possible
at all. How does one represent X=Y+3.6892? Nevertheless there
are some operations which conceivably might be modeled by the

84

train system.

85

normal
program
flow

train z^

o

B

0

\

Figure 20. Correspondence Between Interrupts and Train Layout

One of the most fundamental types of operations one might
wish to model is system I/O. In general, system I/O can be very
complex and difficult to model. It does not seem reasonable to
expect that it could be modeled in any quantifiable way.
However, the occurrence of an I/O operation could be modeled in
two ways. First, one might envision sidings with cars on them.
An input operation could be modeled by backing into the yard and
attaching an additional car to the train. Similarly an output
operation could be the decoupling of a car from the train, with
the car being left on a siding. Alternately one could consider
an automatic load-unload facility for some item (perhaps small
steel balls) from an open model car. In addition to not
representing I/O in a quantitative manner, either of these
alternatives is likely to be moderately difficult to implement.

An alternative would be to represent data types by model
railroad cars. Different types of cars could represent different
data types. While it does not appear feasible to have
quantitative representation, one could use such a scheme to
indicate all cases of data types within the procedure.
Essentially the cars corresponding to the data types they
represent would be picked up by the engine upon entering a
procedure and would be deposited upon exit from a procedure.

85

86

This might be done only for those variables dynamically
allocated. Again this is likely to lead to implementation
difficulties.

Perhaps a more likely utilization of the train facilities
for actual operation is in the representation and queuing
operations. Many programs, particularly complex systems
programs, involve substantial numbers of queuing operations. If
this were done each queue would be represented by a string of
model railroad cars parked on a suitable siding. FIFO and LIFO
operations would be easily represented in terms of the addition
of a car or removal of a car from the appropriate end of a
section. Such an arrangement might help to visualize the
effectiveness of various queuing algorithms.

7.1.5 Potential Program Train Coupling

The ideas presented in the previous section are associated
with some potential areas in which the computer controlled train
might be used to assist in visualization and validation of
software. Implicit in each, however, is some connection between
the actual software and the running of the train. It is
basically assumed that the processor executes "in parallel" with
the operation of the train and that the train is in fact a
visual representation of what is going on within the processor.
This carries with it several implications. First of all there
must be a great slowdown of the executing program from its
normal execution speed. Accordingly all appropriate timing input
cues must be slowed down as well. Furthermore, and this is one
of the most important difficulties, there must be a program
connection between the executing program and the operation of
the train. That is when a statement is executed the train must
be told to move beyond that statement to the next. When a
condition is evaluated and a branch is taken the appropriate
switch must be set on the train layout and Che train must be
told to move over that switch. This section will discuss some
possible ways in which these problems might be addressed.

7.1.5.1 Train Primitive

Before proceeding it should be pointed out that a set of
primitive train operations can be written utilizing the
techniques described in Chapter 3 to facilitate movement of the
train in any of the schemes described below. It will be recalled
that the hardware level control on the train implements two
basic functions: the setting of a bank of eight switches to a
set of desired positions and the setting of the power levels to
individual electrically separate sections of track. It was noted
that in order to operate the train effectively a moderately
complex data structure and set of algorithms are required. Based
upon these however a reasonable set of functions can be
implemented.

86

87

For example, it is expected that the following functions
would be reasonably straightforward to implement.

POWER (PVAL) apply power VAL to track T

SWITCH (A,POS) set switch A to position POS

FORWARD (E) move train E in the forward direction

REVERSE (E) move engine E in the reverse direction

TURN (S) set switch S to the turn position

STRAIGHT (S) set switch S to the straight position

Each of these functions can be implemented relatively easily in
terms of the basic train system.

A very useful but basically more complex function would be
a MOVE (A,B) which would be to move train A from its present
position to photocell B. In general one would want the shortest
path. For purposes of this application, however, the problem
could be localized since calls of this nature would generally be
made only to a relatively short distance from the present
position of the engine. Accordingly the search space for the
path could be greatly restricted to make the operation feasible.
In fact a general path selection problem has been implemented on
the train system at the University of Michigan.

A set of functions of this nature should be kept in mind
when considering the discussions below.

7.1.5.2 Software Simulation

Perhaps the most promising use of the train facility for
software validation lies in the area of software simulation.
Moreover this is probably one of the easiest forms of
utilization to implement. With this approach there is no formal
direct link between the program and the simulation. Rather a
separate simulation program utilizing the primitive train
operations described above is written to correspond to program
control flow. Program structures would be mapped into train
movement utilizing the correspondences described in the previous
section. As the simulator is executed the developer may then
observe control flow by movement of the trains on the track
layout.

This form of study is most likely to be useful during the
design phase of the system. As noted earlier it is at this stage
that the largest number and most difficult to correct errors are
generally made. Assistance and validation at this stage may have
greater impact on overall liability and cost effectiveness than
elsewhere in the software life cycle.

87

88

7.1.5.3 Compiler Generated Calls

At the other extreme of program train coupling is the
notion of having a compiler option which would insert the
appropriate call to primitive train operations into the
executable code stream as source program statements are
processed. One would of course also need synchronization
control; otherwise the program execution would rapidly run away
from train movement. When the results of the program were
executed it would result in essentially parallel operation of
the program and the train visualization of the program. This is
perhaps the tightest coupling one could expect.

However, this form of coupling is expected to be
exceedingly difficult to realize. There are several problems
with this approach. First is the matter of mapping a program
structure onto the train layout. Though this is likely to be
feasible to accomplish it is not expected to be easy.
Furthermore no matter what algorithm is selected there always
will exist programs which would not fit into a given layout.
Finally, modifications of a compiler to this extent are likely
to prove to be expensive, time consuming and difficult to debug
in and of themselves.

7.1.5.4 User Inserted Calls

The idea of user insertion of appropriate train calls falls
somewhere in between compiler generated train calls and a
separate simulation program. This could be accomplished in two
ways. First the user might insert the calls directly in the
source code (perhaps with an appropriate tag in the comment
field to allow easy removal after validation). This shifts the
responsibility for mapping the program structure onto the track
layout from an automatic procedure to the user where it is much
more likely to be accomplished successfully. Furthermore it does
not require extensive modification to program development
software. It would, however, represent a significant increase in
the programming load for the system developer.

The second method of user insertion of calls to the
primitive train operations is through the use of a debug
facility. Many debug facilities have the capability of insertion
of subroutine calls at break points. That is, when a user
defines a breakpoint he is also able to specify the address of a
section of code to be executed when that breakpoint is reached.
It is conceivable therefore that a user could set up
correspondence between the program and the train facility at the
time he was ready to execute the program through use of the
debug facility. This would also allow him to look readily at
only portions of the code, and control the degree of fineness
with which he examines it (treating blocks of code as a single
statement).

88

89

7.1.6 Limitations

All of these possible program train couplings have
limitations of one sort or another. Limitations specific to a
particular method have been mentioned in the section describing
that method. This section will concentrate on limitations common
to all of the possibilities.

One of the most obvious limitations is in the area of
speed. Though a program can execute on even the smallest of
today's computers at a rate of hundreds of thousands of
instructions per second the train could not even handle a single
instruction per second. This is most serious in the area of do
loops. It is clearly not reasonable for the train to circle a
loop any large number of times. Yet this may be necessary to
represent what is happening within the control flow of a
program. Perhaps a digital readout could be added to the loop
and a single symbolic loop made with the train with the actual
number of iterations displayed on the readout.

Technically there is a lack of representation of program
operations. It is clear that some things can be modeled but
there are certainly many which cannot. The extent to which
meaningful validation can be carried out without a more complete
model is still unknown.

Finally there is a matter of the configuration of the train
layout itself. Large complex software systems also have a large
number of control statements, many loops, many branching
decisions, and many procedure calls. Representation of an entire
system on a train facility would require a very large train
facility. Moreover unless one designs a specific train layout
for each program (a time consuming and costly operation) one
would have to strive for a general train layout which could be
mapped into a wide variety of program structures. This would
require a means for some way of "blanking out" unused areas of
the layout. This might be accomplished through the use of small
signal lights along a layout. However, there is always the
problem that no matter what track layout is present a program
structure can be found which will not map into it.

The last issue can be ameliorated to some extent through
the use of modularity in code design and in code validation.
There is no need for each photocell on the track layout to
represent a single station. Rather it could represent a block of
statements or procedure which has previously been verified. In
this way the size of the model might be reduced to one which
would fit on a given train layout.

It is the feeling of these investigators that it is not
really practical to try to represent complex software systems
directly via a computer run train system and they are unwilling
to endorse these ideas. If one were to proceed, however, it is

89

90

felt that the use of the facility for simulation at the design
state or the use of simulation simply to provide visualization
of how the program works, say for training operation, would
represent the most likely areas for further investigation.

7.2 Data and Process Flow

The use of the train to model program control flow, was
considered in the previous section. In this section a dual to
that concept is considered, the use of the train to model data
flow or some real process flow. In some respects the use of the
train to model data or process flow may be more likely to yield
useful results in its use for program control flow. First of
all, this use of the train does not necessarily require as
detailed a mapping to the train as the instruction mappings
considered previously. Moreover, modeling process flow opens an
application other than validation, namely operator training. The
visualization provided by the train may provide a useful tool
training operators in the use of the computer for complex
process control applications.

7.2.1 Concept of Operation

The basic idea is to use the movement of the train to
represent (i.e., model) some type of flow in the overall system
being studied. It is the movement and position of the train or
its associated railroad cars that are of interest.

One example of this discussed briefly in the previous
section is the use of the train to model data flow in a program.
While in general it is not reasonable to use the train to model
operations on the data, in some circumstances, useful results
can be obtained. In particular, if the operation involves a
logical movement of data, a train representation might be
possible. In particular, it might be used to model various types
of cues. In Figure 21 below the siding could represent a queue.
The cars on the siding represent items in the queue. Since the
siding may be entered from the main track at either end, the
siding could represent either FIFO or LIFO queue operations by
adding or deleting cars from either end. Of course, one could
have many such sidings to represent different queues and could
use different types of cars to represent different types of
items on those queues.

A second.class of examples for which process flow modeling
might be useful is for comupter controlled manufacturing
operations. Such a system might consist of several individual
assembly or processing stations with a flow of partially
completed material through the various stations. Each station

90

91

Figure 21.

would typically have material queues for incoming and outgoing
materials. Such a system might be under the control o£ a single
computer or a hierarchical system of computers with a processor
for each station and a supervisor computer, which monitors and
controls the actions of the individual stations. A single such
system is sketched in 22 below.

Use of the train system to model such a manufacturing

Supervisor
Cortputer

Control
Computer

k.
Operation

1

Control
Computer

±.
Operation

h

Control
Computer

M-
Operation

n

 >
material flow

Figure 22.

environment might proceed as follows. The engines under computer
control would represent the transport system between
manufacturing stations. Open model railroad cars would represent

91

92

containers for material being processed at the various stations.
These cars might contain small steel balls to represent the
material itself. As in the data flow example above sidings could
be used to represent material queues. Manufacturing operating
stations might be represented by model load-unload stations to
move the steel balls (magnetically) from one open car to
another.

Material queue
loading station

Material queue

Figure 23.

The use of a computer controlled train facility to
represent data or process flow would typically not be for
software validation in the sense described above. Rather it
might be used to study flow algorithms, e.g., queuing
algorithms, in the early design stages. Visual representation
afforded by the train might be useful during design.

Secondly, the study might be useful as a training tool even
for operations which are not totally computerized. For example a
shop foreman might be charged with the responsibility of
managing the routing of materials from one manufacturing station
to another. The visualization afforded by a train simulation
might be useful in illustrating to him the real effects of
various scheduling algorithms he might elect to use.

7.2.2 Implementation Considerations

There are basically two requirements which a process must
meet before simulation by the train system could be considered.
First, there must exist a mapping from appropriate process
variables to the train facilities. This is highly application
dependent and general rules are not easily stated. Two examples
of such a mapping are cited above. In general movement or
position of the train and/or model cars must be relatable to
some significant parameters within the process being studied and
the visual representation afforded by the train should assist
either the designer or an operator in some way.

92

93

Secondly, the speed range of the train must be acceptable.
That is, it is unreasonable to use the train to represent a data
queuing operation which takes place at the rate of 100,000 data
movements per second. To be useful in a situation like this it
would be necessary that there be a meaningful shift in time
scale which could be accomplished with only a small number of
movement operations actually studied.

Given that the modeling of a process by the train system is
in some way reasonable, there are two approaches to
implementation which might be considered. The first is straight
simulation. In this case there is no physical connection between
the process being modeled and the representation in terms of the
train system. Essentially one would write a separate simulation
program to effect the desired movements on the part of the
train. This is.similar to the simulation approach described in
the software validation section above. This is probably the
easiest mechanism which could be used and particularly for
training operations might well be quite satisfactory.

When the process under study is one which involves control
of some external (to the computer system) real process an
alternative implementation might be considered. For example,
suppose that each station in Figure 22 above is computer
controlled. One could consider removing the control output from
the real devices to be controlled and replacing the devices with
sensors that would be inputs to the computer controlled train
facility. The train computer would then receive all control
commands for the manufacturing devices through an internal
mapping program which would have to be written. These commands
could be translated into appropriate train movement commands. In
addition the train computer facility would have to generate
appropriate inputs to the manufacturing computers.

This alternative approach does in fact have some bearing on
the software validation process as it provides an interaction
with the actual control software in the manufacturing computers
and presents a visual display of the operations they are
performing. This approach, however, is likely to be more complex
than the simulation approach in that one has to develop a number
of hardware sensors as well as a suitable software program.

7.2.3 Discussion

As with software validation, the use of the computer train
facility to model data or process flow requires that a suitably
general track layout and auxiliary facility (e.g.,loading and
unloading stations) exist. One again has the problem of either
developing a special train facility for the process to be
modeled or trying to develop a large general train facility to
model a broad class of processes. The latter case suffers from
the problem, of course, that there always exists processes which
would not fit any given train layout.

93

94

Nevertheless the authors feel that it is in this type of
application that the train facility offers the greatest promise.
The authors are not yet willing to endorse strongly such a
program based upon the limited study to date. Nevertheless, if
suitable applications exist it is believed that this type of
activity may be the most fruitful for future work,

7.3 Modeling Distributed Sensor Systems

This section will examine briefly the methodology for
modeling the logical aspects of distributed sensor systems using
the computer controlled model train system. Recall from Section
1.1 that our model of a sensor was a generator of data which
could be activated either upon synchronous request of the
processor or upon the occurrence of an external event. Recall
also the desired property is an analog to be used for studying
distributed sensors. From the foregoing discussions it is
evident that the facilities of the real time computer
applications laboratory satisfy these conditions.

The train system is itself a distributed sensor system with
two categories of sensors, position sensors (the photocells) and
value sensors (the throttle sensors). Normally these operate in
asynchronous mode based upon external events. However since the
controlling computer system has a real time clock, they may also
be operated synchronously upon command from the computer. The
multi-tasking capabilities of the system software developed for
the computer make it possible to implement various queuing
strategies for dealing with concurrent or nearly concurrent
external events. Moreover, since the computers in the laboratory
may be interconnected it is possible to emulate the effects at
hierarchical levels of observer activity. Consequently, the
computer controlled train system does meet the conditions set
down for an analog of distributed sensors.

The first step in modeling sensor activity is to develop
mapping between the distributed sensors and those available on
the train facility. In most cases this implies a restriction of
the set of sensor systems which may be considered. When one
considers the manner in which interrupts from the photocell
sensors on the train occur it is apparent that they do not in
general occur at random. Normally they are the result of a
sequence of interrupts from contiguous sensors on the train
layout. Accordingly, the system is most appropriate for the
modeling of sensor systems in which there is some expected
movement through the sensor field. This restriction need not be
totally applied, for there is no such restriction on the
throttle sensors, however, since the largest number of sensors
are photocells it would be a common restriction. This
restriction could be somewhat ameliorated by using alternate
mechanisms for causing photocell interrupts, e.g., passing some
other object over them.

94

95

Once a mapping of sensors to the photocells has been
completed, a clear definition of actions to be performed upon
the occurrence of an interrupt must be defined. If these actions
require supplemental input, the user must provide test values
from a secondary input source, e.g., a disk file.

The actions being modeled must be implemented on the
computer system. Most likely they will take the form of a
recording and/or processing of the information obtained from the
sensors. The interconnection between the computer and the
laboratory allows for a study of hierarchical interconnection
between processors. Generally the code at this level of
simulation would be quite similar to that in the system being
modeled. The train system would merely provide a visualization
of the operations.

The generation of the interrupts would be controlled by a
human observer/controller. Underlying the sensor-observer
interconnections being modeled would be a separate set of tasks
such as those described in Section 3.4' for controlling the
movement of the train. Desired motion (i.e., sensor activity)
could be generated either by a file describing the desired
routing or by the human observer/controller using a subset of
the train throttles.

It is also possible to add auxiliary controls and sensors
to the model train system which would augment its modeling
capability. Automatic coupler-decoupler systems for model
railroad cars could be easily added. Moreover, to represent
material of one sort or another, mechanisms for loading and
unloading items (e.g., small steel balls from open cars could be
added. Perhaps more usefully, it is possible that bar codes
similar to those currently in wide use in grocery stores could
be added to model railroad cars. Passing the car past a read
mechanism would enable identification of that car. In other
words, the class of sensors which could be represented by the
system system would be increased.

With procedures such as this, it is possible to represent a
reasonable class of distributed sensor systems observe behavior
under varying inputs.

95

APPENDIX A

000000000000 ssssssssss ww ww IIIIIIIIII r^fTlf^ fTtt^WI tnrt% TT1fT%^n ffl

000000000000 ssssssssssss ww ww IIIIIIIIII ^n ^P ^P ^^ ^^ ^i^ 0^ T^ ^T^ ^t ^^ ^^

00 00 ss ss ww ww II TT
00 00 ss ww ww II TT
00 00 sss ww ww II TT
00 00 sssssssss ww ww II TT
00 00 sssssssss ww ww ww II TT
00 00 sss ww wwww ww II TT
00 00 ss ww ww ww ww II TT
00 00 ss ss wwww wwww II TT
000000000000 ssssssssssss www www IIIIIIIIII TT
000000000000 ssssssssss ww ww IIIIIIIIII TT

Operating System With Trains

USERS

MANUAL

August, 1979

Richard A. Volz
Richard M. Jungclas

97

TABLE OF CONTENTS*

OSWIT: An Overview 1
1.1. Introduction 1
1.2. OSWIT Command Language 2
1.3. OSWIT File System And Utility Programs 2
1.4. OSWIT Support Functions 3
1.5. MTS - OSWIT Communications 3
1.6. Real Time Operations 3

1.6.1. Tasking , 4
1.6.2. I/O And Interrupt Structure 4

SYSTEM OPERATING INSTRUCTIONS 6
2.1. System Hardware : 6

2.1.1. HALT Switch 7
2.1.2. Disk WRITE ENABLE/PROTECT Switch 7
2.1.3. MAIN/AUXILLARY Disk Switch 8
2.1.4. Hardware Bootstrap Switch 8
2.1.5. Main Disk Drive 8
2.1.6. LSI-11 Backplane 8
2.1.7. Disk Controller 8
2.1.8. A/D And D/A Interface 8
2.1.9. D/A Outputs 9
2.1.10. A/D Inputs 9
2.1.11. Digital Display And Select Switch 9
2.1.12. Analog Display And Select Switch 9

2.2. Loading OSWIT And Fatal Error Recovery 9
2.2.1. Loading 9
2.2.2. Fatal Error Recovery 9

2.3. OSWIT System Memory Configuration 10
2.4. MTS Communications 11

OSWIT COMMAND LANGUAGE 13
3.1. Command Overview 13
3.2. OSWIT Command Language Descriptions 15

COMMENT 15
COPY 16
DEBUG 17
LOAD 18
MTS 19
RESTART 21
RUN , , , 22
SET 23
START , . , . 25
UNLOAD 26

99

OSWIT I/O AND INTERRUPT STRUCTURE 27
4.1. System I/O Directives 27

4.1.1. Read And Write Operations 27
4.1.2. Conversions 27

4.2. Logical Units 27
4.3. Pseudodevices 28

4.3.1. Psuedodevice Overview 28
4.3.2. Pseudodevice Descriptions 30

C0NVERTER0 30
♦CONVERTER!* 30
♦DUMMY* 31
MSINK 32
MSOURCE 33
MTS 34
PRINT 35
READER 36
SINK 37
S0URCE 38
TRAIN 39

TASKING AND TIMING 40
5.1. Tasking And Timing Introduction 40
5.2. Task Definition 40

5.2.1. Task Identifiers 41
5.2.2. Priority 41

5.3. Task Scheduling 41
5.3.1. Synchronous Scheduling 42
5.3.2. Asynchronous Scheduling 42

5.4. Task Termination 42
5.5. Locking And Unlocking Tasks 43

OSWIT FILE SYSTEM 44
6.1. File System Overview 44
6.2. File Naming Conventions 44
6.3. OSWIT Public Files 44

*ABSL0AD 44
*BOOTLOAD 44
*BITMAP 44
*CATALOG 44
*OSWIT 44
*TEMPFILE1 44
*TEMPFILE2 44
*TEMPFILE3 44

6.4. File Protection 46

7. OSWIT UTILITY PROGRAMS 47
7.1. Utility Programs Overview 47
7.2. OSWIT Utility Program Descriptions 48

*BL0KEDIT 48
*BOOT 50
*DISKC0PY 51

ii 100

♦EDIT 52
♦FILEFIX 55
*FILESNIFF 57
*FILES11 59
♦LINK11 61
*LOADCOPY 64
*PATCH 65
*TIME 66
*VERIFY 67

Appendix A: OSWIT ERROR MESSAGES 68

Appendix B: OSWIT SYSTEM DIRECTIVES 69
7.3. System Directive Overview 69
7.4. EMT Descriptions 70

AT 70
BIN2D 71
BIN20 72
CANCEL 7 3
CLOSE 74
DEFINE 75
DESTROY 77
DSKIO 78
D2BIN 82
ERROR 84
EVERY 85
EXIT 86
GETBUF 87
GETPAR 88
HALT 90
IN 91
LISTEN 92
LOAD 9 3
LOCK 95
OPEN 96
02BIN 98
PARSE 100
READ 102
READB 104
READW 106
RELBUF 107
RESET 108
SCAN 109
START Ill
WAIT 112
WHENA 114
WHENB 114
WRITE 115
WRITEB 117
WRITEW 119
UNLOCK 120

101 111

Appendix C: SYSTEM SUBROUTINES AND FUNCTIONS 121
ATAN 121
COS 122
D2FLOAT 123
DOPEFIX 125
EXP 126
FLOAT2D 127
LOG 128
sin 129
SQRT 130
fBMTXMUL 131
#FCMP 132
#FLOAT 133
#FMTX2I 134
#FMTXADD 135
#FMTXMUL 136
#FMTXSUB 137
#FSCLDIV 138
#FSCLMUL 139
#IFIX 140
#IMTX2F 141
#IMTXADD 14 2
#IMTXAND 14 3
tIMTXMUL 144
#IMTXOR 145
#IMTXSUB 146
#IMTXXOR 147
#ISCLDIV 148
#ISCLMUL 149
tIROUND 150
#MTXMOV 151
#POLY 15 2
#POWER 153
#POWERII 154
fPOWERRT 155
#powerrr 156
#scale 157
#subscr 158
#catnate 159
#SUBSTR 160
#BITSEL • 161
#IR 162
#IRD 163
#11 164
#IID 165
IIS 166
#READ 167
#OR 168
#ORD .169
#01 170
#OID 171
#OS 172
#WRITE 173
#DUMMY1 174

IV
102

#GRD 175
#GID 176
#READG 177
#PRD 178
#PID 179
fWRITEP 180
#DUMMY2 181
#GCNV 18 2
#PCNV 18 3

Appendix D: ODT - Online Debugging Tool 184

Appendix E: ASSEMBLY DEBUG MODE 186
7.5. General Concepts 186
7.6. DEBUG Command Descriptions 189

ALTER 189
AT 190
BREAK 191
BINFO ' 192
CONTINUE 193
CLEAR 194

-i% CSECT 195
DISPLAY 196
DISPLAYB 197
GOTO 198
GR 199
MODGR 200
OSWIT 201
STEP 202

Index 203

Page numbers in the Table of Contents refer to the numbers
in the upper corner of each page.

103

OSWIT USER'S MANUAL 1

1. OSWIT: AN OVERVIEW

1.1 Introduction

The field of digital computers and their applications is
perhaps the most dynamic field in engineering at the present
time. Driving this change during the past ten years has been the
introduction and widespread acceptance of the microcomputer.
There are numerous products on the market using microcomputers,
and the future is almost limitless. At present, however,
software support for these systems lags far behind their older
and larger counterparts. The availability of microcomputer
operating systems is rather limited. Most present microcomputer
operating systems are not really suited to real time
applications that are forthcoming for microcomputers. During the
next decade it is important that suitable real time operating
systems be afforded the developer of microcomputer applications.

OSWIT (Operating System With Trains) is an operating system
developed at the University of Michigan to meet real time
executive system needs for the Digital Equipment Corporation
LSI-11 microcomputer. The basic features of the operating system
were designed and implemented by Jack Bonn and Ted Kowalski as
an independent study project under the direction of Professor
Richard A. Voiz in the fall of 1975 and winter of 1976. During
the fall 1976, Bill Dargei was responsible for the design and
implementation of the disk controller. In addition, Kent Hoult
developed and implemented the file system while Arnold Vance
implemented the A/D and D/A drivers and train interface. In fall
of 1977, Houton Aghiil completed the design and installation of
the MCP protocol between OSWIT and MTS. In fail 1977, Kent Hoult
continued the development of OSWIT and the file utilities. Carol
Briggs, Mark Hanie and Glen Purdy later modified the I/O
structure to allow transmission rates of 2400 baud. Rick
Richardson modified OSWIT to support DEC compatible soft
sectored floppy disks at other locations within the University.

The basic features of the OSWIT operating system are:

1. A task scheduler which functions with a programmable
clock and asynchronous events to start task by various
methods subject to a specified software priority.

2. A wait structure to allow processing and I/O
operations to proceed in parallel.

3. Input/Output device drivers for the console, A/Ds,
D/As, floppy disk, paper tape reader, and printer.

4. MCP protocol to allow the microcomputer system to
communicate with the University's central computer
system (MTS).

5. A simple command structure modelled after the Michigan

OSWIT: AN OVERVIEW

104

OSWIT USER'S MANUAL

Terminal System (MTS).

6. Floppy disk file system.

7. A small set of utility routines to support arithmetic
conversions.

8. An absolute loader.

A brief overview of these features will be given here. They are
described in greater detail in the OSWIT user's manual,
presented in Appendix B.

1.2 OSWIT command language

The OSWIT command language provides the mechanism for user
communication with OSWIT. This command language is modeled after
the Michigan Terminal System command language. This command
language permits system control, program control, a debugging
monitor, file handling and communication with MTS.

This command language also supports logical unit assignment
and pseudo device names similar to those used on MTS. Assignment
of the physical devices to logical units may be done when
program execution is initiated from the OSWIT command language
or from wihtin an executing program.

Pseudo device names are used by OSWIT command language to
symbollically refer to physical file or devices when the actual
file or device names or address are not available. Pseudo
devices names are provided for terminal output and input, paper
tape reader, the line printer, the A/D and D/A converters, the
train interface and a dummy file or device.

1.3 OSWIT file system and utility programs

OSWIT has mechanisms for creating, destroying, renaming,
emptying, truncating, editing and cataloging disk files. To
minimize the operating system memory requirements, these
mechanisms are provided by an OSWIT utility program named
*FILES11. OSWIT defines a file as a sequence of logical records
placed in non-contigious, 512 byte blocks on the disk. A file
cannot exceed 255 blocks.

Filenames are limited to 10 characters or less and may
consist of any combination of printable, uppercase characters.
Any filename starting with an "*'' is designated as a public file
and is usually reserved for OSWIT system files and utility
programs.

OSWIT provides no file protection mechanism in the its
catalog. The only protection of files available is through the
WRITE ENABLE/PROTECT hardware switch.

OSWIT: AN OVERVIEW

105

OSWIT USER'S MANUAL

In addition, other^ utility programs, such as *EDIT,
*FILESNIFF, and *TIME provide additional user support.

1.4 OSWIT support functions

Internal to OSWIT are a number of support routines used by
the operating system to implement its functions. These include
numerical conversions, dynamic buffer management, I/O
operations, task scheduling, etc, . As a general principle, all
such functions are made available to user's programs. These
functions are called at the assembly language level via emulator
trap instructions (EMTs).

1.5 MTS - OSWIT communications

OSWIT uses the MCP protocol {1} to communicate with MTS" on
an Amdahl 470/V7. Each system is hardwired via a 1200-2400 baud
line to a remote data concentrator, which statistically
multiplexes the line with other units and communicates with MTS
through a hardwired 9600 baud line. This mechanism is used
principally to transfer data and programs between MTS and the
local floppy disk, or to use the system as an "intelligent
terminal". Source editing can be done locally, transferred to
MTS for assembly or compilation, linked and the object file down
loaded to be stored and executed on microcomputer system.
Alternatively all development of user programs can be
accomplished on MTS with the final object stored and executed
locally. In addition, data may be collected and transfered to
MTS for greater storage capacity or more thorough analysis.

■'•• ^ Real time operations

According to Martin, {2} a real time computer system is one
which accepts inputs from one or more sources, acts upon these
inputs, and produces corresponding outputs fast enough to effect
the source. This definition encompasses a wide variety of
systems such as the use of a computer as a data concentrator, as
the control element in a feedback loop, as a data logger for
some real time process, or as a supervisor for a set of other
real time computers.

There are two primary characteristics which distinguish
real time application from the scientific computations: the need
to respond rapidly to the occurrence of events external to the
computer, and the need to handle I/O for a potentially large

1 UM Computing Center, "An MTS Communications Protocol (MCP)
Proposal", May 1976.

2 Martin, James, Design of Real Time Computer Systems,
Prentice Hall.

OSWIT: AN OVERVIEW

106

OSWIT USER'S MANUAL

number of external devices in a manner which does not lock up
the CPU during the I/O transfer. An example would be to require
a computer controlling electric power distribution to suspend
normal program operations upon detection of a generator failure
and initiate an orderly shutdown procedure for that generator
and a redistribution of the load among the remaining generators.
The consequences of these characteristics are far reaching.

1.6.1 Tasking

First, in order to allow the user to specify the response
to external events, he/she must be given some control over
interrupt handling. Secondly, since the computer is usually much
faster than the devices it controls or responds to, it is common
to have a single computer control a number external devices. As
a result, one usually has several more or less independent
pieces of code known as tasks which are executed at different
times. OSWIT provides a mechanism for associating a task with an
interrupt or a condition for a given external device. When an
interrupt occurs the program currently operating may be
suspended and the associated task executed. When this task is
completed, its execution is terminated and the original program
is resumed.

Associated with notion of task is that of a priority. If
two or more tasks are competing for the CPU, there must be some
mechanism for deciding which task is to execute. In OSWIT each
task is assigned a priority. Once started a task will run to
completion unless interrupted by a task with a higher priority.
If task A has priority of 10 and is interrupted by task B with a
priority of 25, task B will execute until completion unless
interrupted by a task with a priority greater than 25. When task
B finishes, task A will resume.

1.6.2 I/O and interrupt structure

The OSWIT I/O and
oriented toward real
the programming level
Assignment of physical
the time program ex
within the program. Al
return to the calling
that processing may be
must be completed b
issue a WAIT request t

interrupt
time appl

are done th
devices to
ecution is
1 I/O reque
program af
overlapped

efore the
o OSWIT.

structure is generalized and
ications. All I/O operations at
rough logical unit assignments.
logical units may be done at
initiated or dynamically from

sts to OSWIT do an immediate
ter the request is initiated so
with I/O. If an I/O operation
task can proceed, the task may

OSWIT supports logical record (line), byte, word and
character I/O. OSWIT also supports requests for decimal or octal
character string to binary word and binary word to decimal or
octal character string conversion requests.

OSWIT supports tasks that require synchronous timing. The
LSI-11 microcomputer hardware has a programmable real time

OSWIT: AN OVERVIEW
107

OSWIT USER'S MANUAL

clock. The user can request OSWIT to set up time intervals in
the clock and interrupt the CPU when the inverval has passed.
This OSWIT facility allows the user to specify that a task is to
be executed repeatedly at fixed intervals of time, at a certain
time of day or after some interval of time.

OSWIT: AN OVERVIEW

108

OSWIT USER'S MANUAL

2. SYSTEM OPERATING INSTRUCTIONS

Each laboratory station consists of a number of individual
pieces of hardware. Their use as a coordinated system is
controlled by the OSWIT operating system. This chapter
identifies briefly the individual components of the system and
describes how to operate the system, which includes the
operation of the system hardware.

2.1 System hardware

Figure 1 shows the pictorial view of the system hardware.
The components of interest in system operation are:

A. HALT switch
B. Disk WRITE PROTECT/ENABLE switch
C. Disk READ/WRITE LED
D. Hardware Bootstrap Switch
E. MAIN/AUX disk switch
F. Main disk drive
G. LSI-11 Backplane
H. Disk controller
I. A/D and D/A interface
J. D/A outputs
K. Digital display select switch
L. Digital display
M. Analog Display
N. Analog display select switch

The position of these components are indicated in Figure 1.
The way each component is described in more detail in the
following sections.

2.1.1 HALT switch

Depressing the HALT switch will place the system in HALT
mode which in turn traps the system to the ODT (Online Debugging
Tool) monitor. This monitor resides in a read only memory (ROM)
on the CPU circuit board. It allows the user to (1) display
and/or modify memory and register contents, (2) begin execution
at a specified address, or (3) load an absolute core image in a
special form (usually just a more general loader).

2.1-2 Disk WRITE ENABLE/PROTECT switch

This switch controls write protection on the system floppy
disk. When this switch is placed in the WRITE ENABLE position,
writes to the disk will be completed. When the switch is in
WRITE PROTECT position writes to the disk are not completed but
an audible alarm (two bells) is sounded. Since this is the only
protection mechanism for the floppy disk, this switch should be
set on WRITE PROTECT at all times, except when the user needs to
WRITE to the disk.

SYSTEM OPERATING INSTRUCTIONS
109

s5^

6^

e
o
CD
<

o

no

OSWIT USER'S MANUAL

2.1.3 MAIN/AUXILLARY disk switch

Although there is normally only a single disk connected to
system, the disk controller is capable of controlling two disk

switch is present for each disk drive present.
 i. k.i.___ i >._k —._ __i .>_^_ ..u;_u

2.1.4 Hardware bootstrap switch

The hardware bootstrap switch is used to bootstrap the
operating system located in-the file *OSWIT on the disk into
core. Use of this switch is the normal way of loading OSWIT and
beginning a session with the system. It is also often used to
restore operation if the user's program causes the system to
crash (fail). The operating system will not boot if this file is
not present on the currently selected drive. The sequence of
events is as follows. First, the hardware bootstrap loads and
executes another bootstrap program residing in a file called
*BOOTLOAD. This bootstrap program loads and executes an absolute
loader program residing in a file called *ABSLOAD. The absolute
loader loads and executes the operating system residing in the
file named *OSWIT. Once OSWIT is initialized, the user will be
prompted with an initial message.

2.1.5 Main disk drive

This is the standard disk drive present on all systems. It
utilizes a hard sectored, single density diskette.

2.1.6 LSI-11 backplane

The LSI-11 is the heart of the system. This unit consists
of a LSI-11 microprocessor, 56K bytes of memory, and serial and
parallel I/O boards.

2.1.7 Disk controller

The standard disk controller interface will control up to
two disk drives.

2.1.8 A/D and D/A interface

The A/D and D/A interface contains the A/D and D/A
converters and other logic to interface the converter to the
LSI-11. The standard interface will provide up to two converters
of each type, to interface the converter to the LSI-11.

SYSTEM OPERATING INSTRUCTIONS
■ 111

OSWIT USER'S MANUAL

2.1.9 D/A outputs

These are the analog outputs from the D/A converters
contained on the interface.

2.1.10 A/D inputs

These are analog inputs to A/D converts from external
devices.

2.1.11 Digital display and select switch

This digital display will display the digital output from
A/D converter or the digital input to the D/A converter. The
display select switch will determine which device is displayed.

2.1.12 Analog display and select switch

The analog display will display the voltage input from the
A/D converter or the voltage output from the D/A converter. The
analog display select switch determines which device is
displayed.

2.2 Loading OSWIT and fatal error recovery

2.2.1 Loading

The OSWIT operating system can be loaded or reinitialized
by hardware bootstrapping or by running a bootstrapping program
*BOOT. By pressing the BOOT button, the operating system
residing in the file *OSWIT will be loaded, initialized and
executed. The *BOOT utility program may be used to load,
initialize and execute the operating system contained in any
file. (This feature is typically used only by system programmers
when working on a new version of OSWIT.) Once booted, the user
will be prompted with '.', and the user will be in the OSWIT
command language monitor. The OSWIT command language is
described in detail in the next chapter.

2.2.2 Fatal error recovery

When a fatal error occurs, the program is unable to
continue and will crash to either ODT with prompt of '9' or the
DEBUG mode with a prompt of ,*,, depending upon the severity of
the error and the system configuration. In some cases it is
possible to recover operation without rebooting OSWIT.

From ODT, a cold start of the operating system can be
performed by typing 140G. This is equivalent to starting with a
fresh OSWIT load except that the presently loaded version of
OSWIT is used. All I/O devices are disconnected from the user
program and the program disappears. A warm start of the
operating system may be performed by typing 144G. This attempts
to leave the user program loaded with I/O devices connected. A

SYSTEM OPERATING INSTRUCTIONS
112

OSWIT USER'S MANUAL 10

program restart is generally inadvisable. It is used prior to
entering DEBUG mode to see what went wrong. When in ODT, the
DECwriter must have the uppercase key down.

A return from the DEBUG package may be accomplished by
entering an "OT" command.

2* ^ OSWIT system memory configuration

Figure 2 shows the standard operating system memory
configuration. The interrupt vectors are located from 0-377
(octal). The memory mapped I/O device status registers are
located in last 8K bytes. OSWIT, the debug package, the system
stack and buffer area are located in high memory as shown. The
user program area always starts at 400 (octal). Approximately
18K words (36K bytes) of user program can be loaded.

The system can be reconfigured in two ways; by modifying
the stack size, and by removing the debug package. The system
stack size is dependent upon the number of nested subroutines
and parameters stored on the stack. The default size of IK
should be sufficient for most applications.

By removing the debug package, the user recovers an
additional 2K of memory space, which can be used for his/her
program. When the debug package is removed the buffers and stack
area are redefined.

2.4 MTS communications

OSWIT uses the MCP protocol to communicate with MTS. When
the OSWIT MTS command is issued, the DECwriter is effectively
connected to MTS and operates as a "standard" terminal, except
that a control-Z is accepted as a control command to return
control to the local operating system, OSWIT.

It is also possible to have program communication with MTS.
The OSWIT pseudodevice *MTS* can be used by OSWIT commands,
utility programs, or user programs to establish a data path
directly between MTS and OSWIT as needed (see OSWIT "RUN"
command in the next chapter).

One of the more useful features of the MTS communication is
the transfer of files between MTS and the local floppy disk.
There are many options, however, and care must be taken if the
transfer is to be completed correctly. The following examples
illustrate copying object and source files between MTS from
OSWIT,

Example(s):

A. Binary files

1. From OSWIT to MTS

SYSTEM OPERATING INSTRUCTIONS
113

J4t*s&n.iocT*l)

ioo

XuremiPT VECTORS I zs^By-fes

(JSZR'S

sysrtM BoFFeRs

SYSTEM StbCK

DEBUG

757777
U o ooo

mun I

OSWIT

Deuce STATUS
% VATA RBt-isreJts

^26lC hyrrs

ZK hybs

fi&utt 2: ^"AUP/^RD ost«//T w^w^V COtifltOWOKj
114

12 OSWIT USER'S MANUAL

#COPY *SOURCE*@BIN MTSFILE
^COPY OSWITFILE *MTS*

2. To OSWIT from MTS

#COPY MTSFILE *SINK*@BIN@~TRIM
^COPY *MTS* OSWITFILE

where @BIN, and @~TRIM are MTS modifiers to transfer a binary
file without character conversion and without trimming trailing
blanks off the lines.

B. Source files

1. From OSWIT to MTS

#COPY *SOURCE*@SP@NCC MTSFILE
^COPY OSWITFILE *MTS*

2. To OSWIT from MTS

JCOPY MTSFILE *SINK*@SP@NCC
^COPY *MTS* OSWIT FILE

where §SP is a MTS modifier that is a special I/O request to the
data concentrator and @NCC is a MTS modifier specifies no
carriage control is used and "" is a control-Z and the prompts
typed by the active operating system are underlined.

SYSTEM OPERATING INSTRUCTIONS
115

OSWIT USER'S MANUAL 13

3. OSWIT COMMAND LANGUAGE

3.1 Command overview

The OSWIT command language provides the mechanism for user
communication with OSWIT. The command language permits system
control, program control, a debugging monitor, file handling and
communication with MTS.

All commands must start in column 1 and may be entered in
either upper or lower case. Abbreviations consisting of a string
of the initial characters of a command are allowed. The minimum
abbreviations are underlined. The OSWIT command language
interrupts always prompt the user with a ".".

The commands are listed below with a brief explanation of
their function. A detailed explanation of each command is given
in the following section, "OSWIT command language descriptions".

COMMAND SUMMARY

COMMENT [TEX1]

Insert comments on console listing

COPY [FDnamel[FDname2]]

Copy contents of a file device to another
file or device.

DEBUG •

Enter DEBUG monitor

LOAD

Load a program without executing

MTS

Enter MTS through OSWIT

RESTART [AT location] [I/O FDname]

Restart or initiate program execution

OSWIT COMMAND LANGUAGE
116

14 OSWIT USER'S MANUAL

RUN [object FDname] [I/O FDnames]
[PAR=parameters]

Load and execute the program

SET parameter=state [parameter=state]

Change system parameters

START [AT location] [I/O FDnames]

Restart-or initiate program execution

UNLOAD

Unload the currently loaded program

OSWIT COMMAND LANGUAGE
117

OSWIT USER'S MANUAL 15

3.2 OSWIT command language descriptions

COMMENT

Command Description

Purpose: To allow insertion of comments on output to the
terminal.

Prototype: COMMENT [TEXT]

Description: This command is ignored by the system, which
allows the user to put comments in with his OSWIT
commands.

Example(s): COM THIS IS A COMMENT COMMAND.

OSWIT COMMAND LANGUAGE
118

16 OSWIT USER'S MANUAL

Purpose :

Prototype:

Description;

COPY

Command Description

To copy the contents of a file or device to
another file or device.

COPY [FDnamel [FDname2]]

Two FDnames may be given as parameters;

FDnamel

FDnamel specifies the file or device
that contains the lines to be copied
(the input). If FDnamel and FDname2 are
both omitted the input lines will be
read from *SOURCE* and written on
SINK.

FDname2

FDname2 specifies the file or device
that is to receive the copied lines
(the output). If FDname2 is omitted the
output lines will be written on *SINK*.

The COPY command is a series of read and write
operations. It causes lines to be read
sequentially from FDnamel and written on FDname2
until the end of file is encountered on FDnamel.

Example(s) COPY A B

COPY A

COPY

File A is copied to file B

File A is copied to *SINK*

♦SOURCE* is copied to *SINK*

OSWIT COMMAND LANGUAGE
119

OSWIT USER'S MANUAL 17

DEBUG

Command Description

Purpose: To allow the user to enter either ODT mode or to
make a forced entry to the DEBUG package.

Protoype: DEBUG

Description: This command will issue an IOT instruction which
will either be trapped, and an entry made to ODT
via a HALT instruction; or to the DEBUG program,
if it has been loaded.

To get back to OSWIT you may issue a "P" if in
ODT, or "OT" (OSWIT) or "CE" (CONTINUE) if you
are in the DEBUG program.

Example (s) : DEBUG

OSWIT COMMAND LANGUAGE
120

18 OSWIT USER'S MANUAL

LOAD

Command Description

Purpose: To load a program without initiating execution.

Prototype: LOAD [object FDname] [I/O FDnames]
[PAR=parameters]

Description: "object FDname" specifies the file or device
containing the program to be loaded. If omitted,
the orogram is loaded from *SOURCE*.

The keyword parameters "I/O FDnames" are the
assignments of logical I/O units to files or
devices for use by the loaded program during
execution.

The PAR keyword specifies an arbitrary string of
characters to be passed to the loaded program on
initiation of execution through an ADCON in Rl.

Example(s): LO OBJECT 5=INPUT 6=0UTPUT PAR=RUN

This loads the program OBJECT. Logical units
5 & 6 are soecified as INPUT and OUTPUT
respectively and Rl is set up to point to a
string in core which contains a 3 in the
first byte (the length of the string)
followed by the characters "R"/"U","N".

OSWIT COMMAND LANGUAGE
121

OSWIT USER'S MANUAL 19

MTS

Command Description

Purpose: To allow the user to communicate with MTS through
OSWIT.

Prototype: MTS

Description: The user should establish a link to MTS, then
issue the MTS command to allow usage of the
console device as a regular terminal connected to
MTS. The link may be established though a
telephone link or via a remote data
concentrator(rdc) link. When using the rdc it is
necessary to type an "extra" carriage return to
establish the link from the rdc to the data
concentrator. When using the phone link, it is
necessary to select the full duplex and proper
baud rate for correct communication.

The MTS mode may also be used to transfer data
across the phone link. This is accomplished by
referring to the pseudo device *MTS* in an OSWIT
command. To initiate a transfer, MTS must start
sending data, and OSWIT must start receiving it,
or vice-versa. This is a two step process, where
(1) MTS is told what to do, and (2) OSWIT is told
what to do.

To stop the MTS mode the user types the special
line terminating character: Control-Z
(SUBstitute). While talking to MTS the Control-Z
causes the current line to terminate. The line is
then sent to MTS and control is returned to
OSWIT.

Control may be returned to the MTS mode again at
any time by re-issuing the MTS command.

The ATTN key always interrupts OSWIT and should
not be used in for interrupting the MTS mode. A
control-E is used in the MTS mode to attention
interrupt MTS.

CAUTION; Avoid issuing multiple control-E's since
these may hang the system (MCP protocol). Due to
the high transmission rates, a large amount of
transferred data may be present in OSWIT's
buffers.

Example(s)

OSWIT COMMAND LANGUAGE

122

20 OSWIT USER'S MANUAL

user is talking to OSWIT then
establishes a link to the Data Concentrator

with
• MTS

#$SIGNON xxxx PW=xxxx
#$COPY MTSFILE *SINK*@BIN
.LOAD *MTS* SCARDS=*SOURCE* SPRINT=*SINK*
.MTS
#$SIGNOFF

.START

where the character in column 1 is the
prompt, and the "" is a Control-Z.

OSWIT COMMAND LANGUAGE
123

OSWIT USER'S MANUAL 21

RESTART

Command Description

Purpose: To restart or initiate execution of a program
following either initial loading or an attention
or program interrupt.

Prototype: RESTART [AT location] [I/O FDnames]

Description: The address at which execution is to begin is
specified by LOCATION. The user can reassign the
logical I/O units (see the RUN command
description).

The restart command restarts (or initiates)
execution of the currently loaded program. If a
location is omitted the program is restarted at
the point of the attention or program
interruption or at the beginning if it was not
already executing.

If logical I/O units have been reassigned, the
files and devices originally assigned are CLOSEd
and the newly assigned files and devices are
OPENed.

Example(s): RESTART SPRINT=A

This restarts the currently loaded program
with SPRINT reassigned to file A.

RES AT 20000

This command will restart the users program
a*- location 20000.

OSWIT COMMAND LANGUAGE
124

22 OSWIT USER'S MANUAL

Purpose:

Prototype:

Descriptor!

Example(s)

RUN

Command Description

To load and initiate execution of a program

RUN [object FDname]
[PAR=parameters]

[I/O FDnames]

"object FDname" specifies the file or device
containing the program to be loaded. If omitted,
the program is loaded from *SOURCE*.

The keyword parameters "I/O FDnames" are the
assignment of logical I/O units to files or
devices for use by the loaded program.

The PAR keyword specifies an arbitrary string of
characters to be passed to the loaded program on
initiation of execution.

The run command calls upon the loader to load the
object program into memory. If there are no fatal
loading errors the comment " EXECUTION BEGINS "
is printed and control is transferred to the
entry point of the program by a standard
subroutine call. Rl contains the address of a
byte containing the length of the string passed
followed by the actual string
terminates execution by restoring
and doing a subroutine return
EXECUTION TERMINATED " is printed

If the program
the registers
the comment "

All storage, files, and devices used for this RUN
command are automatically released unless
execution was not terminated normally.

RUN LOAD

This loads and initiates execution of the
program in the file LOAD.

R MYPROG 5=INPUT 6=0UTPUT PAR=QUIT

This loads and initiates execution of the
program in MYPROG. Logical I/O units 5 & 6
are assigned to the files INPUT and OUTPUT
respectively. Rl contains a pointer to a
byte which contains the length of the string
(4) followed by the letters "Q","U"

If -r If n rnff
, X , X .

OSWIT COMMAND LANGUAGE
125

OSWIT USER'S MANUAL 23

SET

Command Description

Purpose: To allow changing of various system parameters.

Protoype: SET PARAMETER=STATE [PARAMETER=STATE]

Description: The PARAMETER will be set to the specified STATE.
If an illegal parameter or state is entered an
error message will be printed and the rest of the
line will be ignored. However all legal
assignments before the point of the error will be
set.

The legal parameters and states are as follows:

DEBUG=OFF

This will remove the DEBUG monitor from the
system to give extra space for user
programs. When removed, OSWIT will fatally
trap memory and illegal instruction errors
which were previously trapped by the DEBUG
monitor. Using the OSWIT DEBUG command with
the DEBUG monitor removed, will cause an
entry to ODT. Typing P will restart OSWIT.
The only way to get the debugger back is to
reboot the system.

Default - Debugger is in system after
loadi ng.

STACK=SIZE

This will change the stack space available
to the program. -SIZE is the number of bytes
to be allocated for the stack. It must be an
even decimal number in the range 0 to the
amount of memory available to the user.

Default - STACK=1024

Note: Setting the stack too large or too
small could result in a system crash.

WV={ON/OFF}

To enable or disable verification of writes
to the floppy disk. If write verification is

OSWIT COMMAND LANGUAGE
126

24 OSWIT USER'S MANUAL

turned on then after every write the data
will be read back in and compared with the
original. If a write error has occured then
the write will be retried up to 3 times.
With write verification off disk writes will
be faster and require less buffer space, but
have an increased chance of error.

Default - WV=ON

Example(s): SET STACK=1000
SET WV=OFF
SET STACK=500 WV=ON DEBUG=OFF

OSWIT COMMAND LANGUAGE
127

OSWIT USER'S MANUAL 25

START

Command Description

Purpose: To restart (or initiate) execution of a program
following either initial loading, or an attention
or program interrupt.

Prototype: START [AT location] [I/O FDnames]

Description: This command is identical to the RESTART command.

OSWIT COMMAND LANGUAGE
128

26 OSWIT USER'S MANUAL

UNLOAD

Command Description

Purpose: To unload the currently loaded program.

Prototype: UNLOAD

Description: The UNLOAD command unloads the current program in
memory previously LOADed by the load command, or
a RUN command if execution did not terminate
normally. All storage allocated to the program is
released, and all files and devices OPENed at
execution time are released.

Example (s) : UNL

OSWIT COMMAND LANGUAGE
129

OSWIT USER'S MANUAL 27

4. OSWIT I/O AND INTERRUPT STRUCTURE

The OSWIT I/O and interrupt structure is generalized and
oriented toward real time applications. Ail I/O operations at
the programming level are done through logical unit assignments.
Assignment of physical devices to logical units may be done
either at the time program execution is begun or dynamically
from the program itself (e.g., in response to user input).
Further, all I/O requests do an immediate return to the calling
program after the request is initiated so that processing may be
overlapped with I/O. Both record and character user I/O are
supported. When the user requires that an I/O operation be
completed before proceeding, he must issue a WAIT call. If the
physical device is in use when input request is made, an
automatic WAIT is done, otherwise the request is queued. The
user task may be started upon completion of an I/Ooperation.

A WAIT is accomplished with a WAIT EMT from an assembly
language program and with a WAIT statement in a CRASH program.

4.1 System I/O directives

These system I/O directives represent supervisor "calls"
which transfer information to OSWIT to perform predefined I/O
functions. A brief overview of the I/O capabilti is presented
here. A detailed description of the I/O directives may be found
in appendix B.

4.1.1 Read and write operations

4.1.2 Conversions

The I/O structure also permits character string to binary
word and binary word to character string conversions. These
functions are performed for octal and decimal character strings
from user's program via EMT calls. For CRASH programs, number-
string conversions are also provided for real numbers. In CRASH
many of the conversions take place implicitly as needed (see
CRASH manual).

4 . 2 Logical units

When a program is coded, the names of the files and devices
to be used for input and output are normally unknown. Even if
the names were known it would be inconvenient to specify them in
the program, since this would require retranslation each time a
file or device name is changed. Thus, it is desirable to specify

OSWIT I/O AND INTERRUPT STRUCTURE
13Q

28 OSWIT USER'S MANUAL

the
This
is a
data
logi
The
the
must
done

names at execution time rather than at translation time.
is accomplished with 1ogica1 I/O units. A logical I/O unit

symbolic name used in a program to specify the source of
for input and the destination of the output information. A

cal I/O unit does not identify a specific file or device.
logical I/O unit is used by the program as a reference. When
program is executed, each logical unit used by the program
be attached to the actual file or device. This is normally
on RUN command by specifying a keyword of the form of

unit=FDname

Alternatively, logical I/O units can be attached by calling the
appropriate subroutine in CRASH or EMT in assembly language.

The logical units are numbered 0 through 30. Some of these
logical unit numbers have specific character representations.
These are:

Name LUN
SCARDS 26
GUSER 27
SPRINT 28
SPUNCH 29
SERCOM 30

These character
definitions.

representations are equivalent to the MTS

Since it is desirable to minimize the information needed on
the RUN command, some of logical I/O units have default
specifications. The following defaults are provided if no
logical I/O unit assignment is given with the RUN command:

Name Default
SCARDS *SOURCE*
SPRINT *SINK*
SPUNCH *SINK*
SERCOM *MSINK*
GUSER *MSOURCE*
0-25 *SOURCE* or *SINK*

(Depending on usage)

4.3 Pseudodevices

4.3.1 Psuedodevice overview

A pseudo device name is used to refer to a file or device
if the actual name is not available. Pseudo device names are
needed for the paper tape reader, terminal input and output, the
line printer, the A/D and D/A converters, the train interface
and dummy devices or files. These pseudo devices are predefined
and described in the next section.

OSWIT I/O AND INTERRUPT
131

STRUCTURE

OSWIT USER'S MANUAL 29

Pseudo device names begin and end with an asterisk. The
characters in name may be entered as uppercase or lowercase.
These devices can be connected to any logical unit.

Example(s):

.RUN MYPROGRAM SCARDS=MYFILE SPRINT=*SPRINT*
0=*CO*

OSWIT I/O AND INTERRUPT STRUCTURE
132

30 OSWIT USER'S MANUAL

4.3.2 Pseudodevice descriptions

CONVERTER0 and *CONVERTERl*

Pseudodevice Descriptions

Purpose: To allow access to the D/A and A/D converters.

Ref by EMT(S): READB

WRITEB

Description: These pseudodevices allow users to assign units
to the A/D and D/A converters.

A READB from this pseudodevice will result in the
current A/D value being input. A WRITEB will
cause an output to the D/A. The trailing number
of the pseudodevice name corresponds to the A/D,
D/A set which it controls. These pseudodevices
cannot be reassigned.

Example(s): RUN SERVOPROG 2=*C0*

OSWIT I/O AND INTERRUPT STRUCTURE
133

OSWIT USER'S MANUAL 31

DUMMY

Pseudodevice Description

Purpose: To allow access to the infinite wastebasket(for
writes) or empty file(for reads).

Ref by EMT(s): All I/O

Description: *DUMMY* is a null device which will accept output
lines and do nothing. On input, it returns with
an endfile condition. The pseudodevice is useful
for routing unwanted output.

OSWIT I/O AND INTERRUPT STRUCTURE
134

32 OSWIT USER'S MANUAL

MSINK

Pseudodevice Description

Purpose: To allow write access to the master sink
device(terminal).

Ref by EMT(s): WRITEB

WRITE

Description: *MSINK* is similar to *SINK* except that:

1) It is always assigned to the terminal

2) It cannot be reassigned

OSWIT I/O AND INTERRUPT STRUCTURE
135

OSWIT USER'S MANUAL 33

MSOURCE

Pseudodevice Description

Purpose: To allow read access to the master source
device(terminal).

Ref by EMT(s): READB

READ

Description: *MSOURCE* is similar to *SOURCE* except that:

1) It is always assigned to the terminal

2) It cannot be reassigned-

OSWIT I/O AND INTERRUPT STRUCTURE
136

34 OSWIT USER'S MANUAL

MTS

Pseudodevice Description

Purpose: To allow access to MTS

Ref by EMT(S): READB

READ

WRITEB

WRITE

Description: *MTS* allows user programs to communicate with
MTS via the modems connected to the LSI-lls. This
pseudodevice cannot be reassigned.

OSWIT I/O AND INTERRUPT STRUCTURE
137

OSWIT USER'S MANUAL 35

PRINT

Pseudodevice Description

Purpose: To allow access to the line printer.

Ref by EMT(S): WRITE

Description: Writing a record to *PRINT* will cause the line
printer to print the record, using the first
character for carriage control. Valid carriage
control characters are (+,-,9,1, ,0) and have the
same meaning as with MTS.

Example(s): COPY PROGLIST *PRINT*

OSWIT I/O AND INTERRUPT STRUCTURE
138

36 OSWIT USER'S MANUAL

READER

Pseudodevice Description

Purpose: To allow access to the paper tape reader.

Ref by EMT(S): READB

Description: Assigning *READER* to a unit number will result
in the paper tape device being referenced. A
READB will result in a byte being read.

Example(s): RUN TAPEREAD 0=*R*

OSWIT I/O AND INTERRUPT STRUCTURE
139

OSWIT USER'S MANUAL 37

SINK

Pseudodevice Description

Purpose: To allow access to the current sink file or
device.

Ref by EMT(s): Depends on assignment.

Description: Accessing *SINK* will reference the file or
device currently assigned to it. *SINK* is
assigned initially to *MSINK*. Any write
operation by an unassigned unit will default to
SINK.

Example(s): RUN PR0G2 1=*SINK*

Output written to unit 1 will reference the file
or device currently a-ssigned to *SINK*.

OSWIT I/O AND INTERRUPT STRUCTURE
140

38 OSWIT USER'S MANUAL

♦SOURCE*

Pseudodevice Description

Purpose: To allow access to the current source file or
device.

Ref by EMT(s): Depends on assignment.

Description: Accessing *SOURCE* will reference the file or
device currently assigned to it. Initially,
♦SOURCE* is assigned to *MSOURCE*. Any read
operation by an unassigned unit will default to
SOURCE.

Example(s): RUN PROG 0=*SOURCE*

When PROG references unit 0, it will reference
the file or device assigned to *SOURCE*.

OSWIT I/O AND INTERRUPT STRUCTURE
141

OSWIT USER'S MANUAL 39

TRAIN

Pseudodevice Description

Purpose: To allow access to the devices associated with
the train.

Ref by EMT(s): READW

Each word read from the train interface is passed
directly to the user program. The high order bit
of the word is set for a photocell interrupt and
reset for a throttle interrupt.

WRITEW

The word passed to WRITEW is written directly to
the train interface.

Description: This pseudodevice allows users to assign units to
the train devices which consist of:

1) Switches

2) Tracks

3) Photocells

4) Throttles

This pseudodevice cannot be reassigned. See READ,
WRITE, READW, and WRITEW EMT descriptions for the
calling procedures.

Example(s): RUN TRAINPROG 6=*TN*

OSWIT I/O AND INTERRUPT STRUCTURE
142

40 OSWIT USER'S MANUAL

5. TASKING AND TIMING

5.1 Tasking and Timing introduction

It is sometimes desirable to have many different activities
take place concurrently within the computer. Normal subroutine
calls cause suspension of the calling program until the called
program has returned. OSWIT allows several procedures to be
active at one time, without requiring the completion of one
before another can execute. Procedures which can "live"
independently of other procedures are called tasks.

There is a variety of ways a task can be scheduled to
execute. It can be synchronized with the clock, with the
procedure which first invoked it, or with some other procedure.
It may even be scheduled to execute asynchronously (triggered by
some external event or I/O completion).

Any task has both a scheduling attribute and a priority
attribute. The priority attribute specifies the relative
importance of each task in the collection procedures being
executed. The basic tasking functions that are part of the OSWIT
system directives are:

ts a task at a certain time of day
els the task
tes and defines a Task Control Block
els and destroys the TCB
ts a task every interval of time
ts a task in an interval of time
s the active task to prevent pre-empting
ts a task on the occurence of a condition
ts task immediately
ts task when interrupt from channel A occurs
ts task when interrupt from channel B occurs
ores task's orginai status before LOCKing

AT Star
CANCEL Cane
DEFINE Crea
DESTROY Cane
EVERY Star
IN Star
LOCK Lock
ON Star
START Star
WHENA Star
WHENB Star
UNLOCK Rest

The general meaning and use of these functions are described in
the following sections. A detailed description of these EMTs can
be found in Appendix B.

The CRASH tasking and scheduling statements are translated
into these EMTs by the CRASH compiler.

5.2 Task definition

Each task occurrence must be known to the operating system.
The DEFINE EMT creates a task control block (TCB) (a block which
contains information about the task, e.g., its starting address,
priority, time interval, etc.) and enters it in a DEFINED queue.
Up to 255 task control blocks may be allocated by OSWIT before
additional requests are ignored. A single piece of code may be
used by multiple tasks (multiple TCBs required) when it is

TASKING AND TIMING
143

OSWIT USER'S MANUAL 41

desired to use the code for more than a single type of event
occurrence. For example, a piece of code may be scheduled for
either of two types of asynchronous interrupts. Three operations
pertain to usage of tasks; (1) Task definition, (2) Task
scheduling and (3) task invocation. Task definition specifies to
OSWIT the existence and the attribute of a section of code that
is going to be used as a task. Task scheduling causes the task
to be entered into a scheduled queue where the task awaits for
some event that triggers the task to began execution. Task
invocation occurs, when some event causes the task to be entered
into the execution queue. Task scheduling and invocation may
occur at the same time or at distinct times. For example, START
schedules and invokes the task concurently, while scheduling and
invocation for ON and EVERY occurs at distinctive times.

5.2.1 Task identifiers

Since the same piece of code may be defined to execute for
several different events, just giving the name or the address
does not uniquely specify which invocation of the task is meant
when it is referred to. Therefore, whenever a task is scheduled,
the scheduler returns a unique identifier for the particular
definition. Subsequently, the task is identified by its task
identifier.

5.2.2 Priority

An invoked task is entered into the collection of tasks
competing for execution. Since only one task may proceed at any
time the one selected to proceed is the one with the highest
priority. If a task with a higher priority is invoked, it pre-
empts the lower priority task until it is completed. There is
neither time slicing nor sharing in OSWIT by the scheduler
during I/O. The highest priority task in competition for CPU
time will run to completion before any lower priority task can
proceed. Within a given priority level, tasks are started in the
same order in which they are scheduled.

It is recommended that user tasks be restricted to
priorities between 5 and 250. The other priorities are reserved
for system use. The main task (program) has priority of 10.

5.3 Task scheduling

Tasks are scheduled on the occurrence of some event. Event
types are grouped as follows:

1. synchronous

2. asynchronous

Synchronous events represent timed events. These events are
predictable in the sense that they are only time dependent.
Asynchronous events are those triggered by some external event

TASKING AND TIMING

144

42 OSWIT USER'S MANUAL

or I/O completion. These are time independent events.

Timing is handled by a programmable real time clock in the
system. The clock is a register 32 bits long that may be
programmed to contain any count between 0 and (2**32)-l. Every
clock tick (every 100 micro-seconds) decrements this register by
1. When a 0 to -1 transition occurs an interrupt is generated
and control is transferred to the task scheduler.

Each of the EMTs described below enters the task's TCB into
a scheduling queue.

5.3.1 Synchronous scheduling

A. AT A task is started at certain time of day.

B. IN A task is scheduled at certain increments of
time from the instant that it was defined.

C. EVERY A task is scheduled to start periodically.

D. START A task is placed into the queue of tasks
competing for immediate execution.

5.3.2 Asynchronous scheduling

A. ON A task is scheduled to start execution upon the
occurrence of some event. Such events occur
whenever an input-output unit signals the
computer that an I/O operation has been
completed on a specified unit with a specific
return code. Possible return codes might be an
end-of-file, an end-of-disk, or a successful
I/O completion.

B. WHEN A task is scheduled to start execution after
the A or B interrupt from a device interface
card.

Once a synchronous or an asynchronous event occurs the
scheduler removes the task's TCB from the scheduling queue and
places it into the execution queue.

5.4 Task termination

After a task has been scheduled, it is placed in a
scheduling queue. The task waits in this queue until the
appropriate event for the task occurs. Once the event occurs,
the task is removed from the scheduling queue and placed into
the executing queue. The task remains there until all of task
code has been executed and all the I/O has been completed. Tasks
can be terminated before executing by the CANCEL EMT or before
complete execution by the HALT EMT.

TASKING AND TIMING
145

OSWIT USER'S MANUAL 43

The CANCEL EMT call cancels the task. If the task is
currently proceeding or has been pre-empted by a higher priority
task, during its execution, it will be allowed to complete its
current execution. If, however, it is not in the execute queue,
it will be cancelled (TCB removed from Scheduling queue) and
never be allowed to proceed. Tasks may be rescheduled.

The HALT EMT call can be used to terminate the execution of
the currently active task. Tasks waiting in the scheduling queue
remain unaffected.

The DESTROY EMT call cancels the task and deallocates the
TCB. A DESTROYed task cannot be rescheduled without reDEFINEing
the TCB.

All tasks should be DESTROYed when they are no longer
needed. Each invocation of a scheduled task requires that a TCB
be maintained by the scheduler. There are only 255 of these task
control blocks available.

5.5 Locking and unlocking tasks

The LOCK EMT is used to lock the active task into an active
state. The task active at time of the call will have its
priority raised to 250, effectively making it the highest
priority user task and giving it exclusive control. The UNLOCK
EMT call will restore the task's original priority. LOCK and
UNLOCK can be used to define critical regions, where task
interruption is undesirable.

TASKING AND TIMING
146

44 OSWIT USER'S MANUAL

6. OSWIT FILE SYSTEM

6.1 File system overview

OSWIT has mechanisms for creating, destroying, renaming,
emptying, truncating, editing and cataloging files on the floppy
disk. These mechanisms are provided in the OSWIT system utility
programs.

Whenever OSWIT opens a file it creates several internal
tables, including a File or Device Usage Block (FDUB - a block
which contains information about the file, e.g., logical unit,
buffers, etc.). OSWIT defines a file as a seqeunce of logical
records placed in 512 byte blocks on the disk. Each block is
linked forward and backward with other blocks composing the
file. This system allows all files to be accepted as non-
contiguous blocks on the disk, thereby avoiding repacking the
disk. A file cannot exceed 255 blocks.

Each logical record begins with a single byte containing
the true record length between 0 and 255 bytes. A single logical
record may overlap two file blocks. Special file control
records, such as end of file and checksums, are indicated by
using a record length of zero, followed by a code defining the
record.

6-2 File naming conventions

File names are limited to 10 characters or less, which
consist of any combination of printable, uppercase characters.
Lowercase filenames can be created without translation to
uppercase, but the OSWIT command intepreter translates the input
line to upper case. File names starting with an '*' are
designated by OSWIT as public files (see next section). Although
the user may define his own public files, they are generally
limited to system files.

OSWIT does not support any mechanism for distinguishing
data, object and source files. This function is the
responsibility of the user. One suggested approach is to append
a ".S" for source files, a ".O" for object files, and a ".D" for
data files to the file name.

6.3 OSWIT public files

Public files are any filename starting with an '*'.
Although the user may define his own public files, this
designation is usually reserved for system files and utility
programs.

The only functional distinction between public and non-
public files is made by *FILESNIFF. Public files are not
normally listed in the file directory unless explicitly
requested.

OSWIT FILE SYSTEM
147

OSWIT USER'S MANUAL 45

The following

*ABSLOAD

*BLOKEDIT

*BOOT

*BOOTLOAD

♦BITMAP

♦CATALOG

*CRZAP

*DISKCOPY

*EDIT

*FILEFIX

*FILES11

*FILESNIFF

*LINK11

*LOADCOPY

*OSWIT

*PATCH

*TEMPFILE1

*TEMPFILE2

*TEMPFILE3

*TIME

*VERIFY

public files are available:

OSWIT absolute loader

Disk block editor

Bootstrap for copies of OSWIT other than the
one loaded by the hardware bootstrap

OSWIT software bootstrap

OSWIT system file indicating the status of
blocks on the disk

OSWIT system file contains the file
directory of all files on the disk

Removes carriage returns from source files
originating on MTS

Duplicate disks

Edit disk source files

Repairs damaged disk file structures

Manages disk files

Prints file directory

Links relocatable object files into absolute
load modules

Used in earlier versions of OSWIT to copy
object files from MTS

Current version of OSWIT

Patches disk absolute load modules

Temporary scratch file used by utilities

Temporary scratch file used by utilities

Temporary scratch file used by utilities

Reports the current time of day

Detects unusable disk blocks

♦ABSLOAD, *BITMAP, *BOOTLOAD, *CATALOG, and *OSWIT are
system files that must always be present on rhe system floppy
disk. *ABSLOAD and *BOOTLOAD are used to boot the operating

OSWIT

148

FILE SYSTEM

46 OSWIT USER'S MANUAL

system contained in *OSWIT. *BITMAP is system file that records
the current status (used or unused) of all disk blocks. *CATALOG
is a system file that contains a directory of all disk files.

In order for the user to utilize disk files, *EDIT,
*FILEFIX, *FILES11 and *FILESNIFF should also be present on the
floppy disk. These files will allow editing, repairing, file
management and cataloging of disk files. In addition,
•TEMPFILE1, *TEMPFILE2, AND *TEMPFILE3 are used by some of the
utilities as temporary work files. The public utility program
files are described in detail in the following chapter.

6.4 File protection

The OSWIT file system does not support any method of
protecting files. The hardware, however, provides some degree of
protection. All the files on the floppy are protected when the
disk is write protected or unprotected when the disk is write
enabled. The user should always leave the disk write protected
unless he explicitly wants files written. •

OSWIT FILE SYSTEM
149

OSWIT USER'S MANUAL 47

7. OSWIT UTILITY PROGRAMS

7*1 Utility programs overview

Utility programs provide additional user support not
provided in the operating system. These utilities are public
files written in CRASH and/or assembly language.

The utility programs are:

*BLOKEDIT Disk block editor

*BOOT

*CRZAP

*DISKCOPY

*EDIT

♦FILEFIX

*FILES11

*FILESNIFF

*LINK11

*LOADCOPY

*PATCH

*TIME

*VERIFY

Bootstrap for copies of OSWIT other than the
one loaded by the hardware bootstrap

Removes carriage returns from source files
originating on MTS

Duplicate disks

Edit disk source files

Repairs damaged disk file structures

Manages disk files

Prints file directory

Links relocatable object files into absolute
load modules

Used in earlier versions of OSWIT to copy
object files from MTS

Patches disk absolute load modules

Reports the current time of day

Detects unusable disk blocks

These utilities are described in detail in the following
section. The most commonly used utilities are *FILES11, *EDIT,
*FILESNIFF and to a lesser extent *TIME and *BOOT. Each of these
utilities have a prompt character, different than OSWIT, ODT or
the DEBUG package.

OSWIT UTILITY PROGRAMS
150

48 OSWIT USER'S MANUAL

7.2 OSWIT utility program descriptions

*BLOKEDIT

Utility Program

Purpose: To allow editing of the data on physical disk
blocks.

Logical I/O Units Referenced:

SCARDS - Read user commands
SPRINT - Output information

Description: This is an interactive program to allow display
and modification of disk blocks. The program
contains a single block buffer that may be
displayed, altered, filled with a constant,
written to disk, or read from disk. The command
summary is as follows:

ALTER <offset> <value> [<value> <value>]

This will allow the user to alter
consectutive locations in the buffer
starting <offset> words from the beginning.

FILL <value>

To fill the buffer with the specified value.

DISPLAY <offset> [<count>]

This will display the specified part of the
buffer in octal. Offset is the number of
words to offset from the start of the buffer
and count is the number of words to be
displayed. If count is omitted then 1 word
is displayed.

READ <disk addr>

OSWIT UTILITY PROGRAMS
151

OSWIT USER'S MANUAL 49

This command will read the specified disk
block into the buffer.

WRITE <disk addr>

This will write the buffer into the
specified disk block. The third word of the
buffer will be altered to contain the
correct checksum.

Note - All number are octal.

Example(s): RUN *BLOKEDIT
EXECUTION BEGINS
READ 1000
DISP 10 4
ALTER 12 12 34 -3
WRITE 1004
<CNTL-C>

OSWIT UTILITY PROGRAMS
152

50 OSWIT USER'S MANUAL

*BOOT

Utility Program

Purpose: To allow copies of the operating system other
than the one loaded by the hardware to be used.

Logical I/O Units Referenced:

None.

Description: This program will attempt to load the file given
in the PAR field as a new operating system. If
there is no PAR field specified, then it will
default to booting *OSWIT. If the file specified
does not contain a valid operating system then
the current core image will be destroyed and you
will end up in ODT.

Example(s): RUN *BOOT
RUN *BOOT PAR=*OSWIT24K

OSWIT UTILITY PROGRAMS
153

OSWIT USER'S MANUAL 51

*DISKCOPY

Utility Program

Purpose: To duplicate a floppy disk.

Logical I/O Units Referenced:

SCARDS - Reads start copy command.
SPRINT - Output messages.

Description: The original disk should be placed in the main
drive and the new disk in the auxiliary. Also the
write protect on the auxiliary drive should be
off.

When return is hit, the copy operation will
start. Due to copying a full track at a time the
copy will be completed in about 30 seconds. If
any errors occur the copy will be aborted at that
point. Entering another return will attempt to
recopy the disk.

If control-C is pressed the program will
terminate by doing a cold start of OSWIT to
restore the disk vectors.

Example(s): RUN *DISKCOPY

OSWIT UTILITY PROGRAMS
154

52 OSWIT USER'S MANUAL

*EDIT

Utility Program

Purpose: To edit source files on the floppy disk.

Logical I/O Units Referenced:

SCARDS - Editor command input.
SPRINT - All editor responses.

Description: *EDIT is an interactive program to allow the
editing of source files on the floppy disk. The
*EDIT program requests the name of the file to be
edited. The *EDIT program will take lines from
the specified input file, perform the requested
operation on the lines and places the edited
lines into a *TEMPFILE. Unless the UPDATE command
is given, the orginal file remains unchanged. The
TOP command is used to re-edit the beginning
lines of the file. After each *EDIT command, the
lines in the newly edited file are changed
accordingly and placed into another *TEMPFILE.
The command syntax is as follows:

ALTER Ipar [stringlstring2]
DELETE Ipar
_INSERT Ipar
OSWIT
PRINT Ipar
REPLACE Ipar
SCAN Ipar [stringl]
TOP
UPDATE
number

A description of these commands follows:

ALTER Ipar [stringlstring2]

The ALTER command will change the first
occurance of STRING1 to STRING2 in each line
for all lines in the given line range. All
altered strings are echoed. If an altered
string is not entered, the previous altered
string will be used. DEL can be any
character. If no changes were made the user
is prompted for a new command.

OSWIT UTILITY PROGRAMS

155

OSWIT USER'S MANUAL 53

DELETE ipar

The DELETE command removes all lines
specified by Ipar from the file.

INSERT Ipar

The INSERT command inserts lines into the
file after the line specified by Ipar.
Fractional line numbers are not allowed. A
carriage return will end the insert.

OSWIT

The OSWIT command returns to OSWIT. All
changes are stored in *TEMPFILE1 or
*TEMPFILE2.

PRINT Ipar

The PRINT command is used to print lines in
the file specified by Ipar.

REPLACE Ipar

The REPLACE command will replace the given
line number range with the lines entered.
The line to be replaced is echoed. The user
is then prompted with a question mark for
the input line to replace the echoed line.
If a carriage return is given on input the
replace process stops.

SCAN Ipar [stringl]

The SCAN command will search the Ipar range
and print all occurances of STRING1. If
STRING1 is omitted, the previous scan string
will be used. No checking is made for no
lines found. If the search fails, the user
is prompted for a new command.

TOP

The TOP command updates the *TEMPFILE and
opens it at the top. If the user has done
editing and wishes to INSERT at line 0 then
he must issue the TOP command.

UPDATE

The UPDATE command updates the file being
edited with all changes made. If this
command is not entered, the edited file is

OSWIT UTILITY PROGRAMS

156

54 OSWIT USER'S MANUAL

stored in either *TEMPFILE1 or *TEMPFILE2
upon return to OSWIT.

number

The 'number* command changes the current
line to the current line + number and prints
the current line. The number can positive or
negitive.

LPAR can be null, contain one line number or
contain two line numbers which specify a line
range. Line numbers must be non-fractional and
positive. Lines are pseudo lines since the files
are all sequential. For this reason automatic
renumbering takes place after Deletes and
Inserts.

Example(s): RUN *EDIT
P 1 5
P 1
A 1 :THIS:
S 1 *END*
10
D 5
UPDATE

OSWIT UTILITY PROGRAMS
157

OSWIT USER'S MANUAL 55

*FILEFIX

Utility Program

Purpose: To try and repair damaged disk file structures.

Logical I/O Units Referenced:

GUSER - Reads user input to prompt messages.
SERCOM - All printed output from FILEFIX.

Description: This program will trace all files on the disk in
the main drive. When an error is found the user
is told the file it occured in and the disk
address. Then the user will be prompted as to
whether the file should be fixed. Fixing consists
of chopping the file off at the point of the
error and emptying it. If the user reponds yes,
the file will be fixed, but if the answer is no,
then FILEFIX will attempt to ignore the error and
go on. If the error was serious enough, FILEFIX
may hang and have to be interrupted. If the
reason for answering no was that the data in the
file is needed , then the user can try to copy
the damaged file to another before running
FILEFIX again. This may or may not work depending
on the severity of the error.

The user is asked if he wants a full trace
map upon program startup. If the answer is yes
then every block traced by FILEFIX will be
printed. Use of this option by the general user
is not recommended since the information is not
useful unless manual repair of the fire b^ some
other means is to Fe attempted.

After completing the file trace a check is
made to see if there are any files occuping the
same disk address. If any are found, the user
should destroy both files after FILEFIX is done.
Once again, recovery of the data may or may not
be possible before the files are destroyed.

The third phase finds and corrects any
discrepencies between the bitmap and the actual
storage used on the disk. A list of all
discrepencies will be printed.

Note - FILEFIX does not currently correct any
erroneous information in the catalog. So if a

OSWIT UTILITY PROGRAMS
158

56 OSWIT USER'S MANUAL

FILESNIFF bitmap and catalog block count
disagreed before the fix they will still
disagree.

Example(s): RUN *FILEFIX

OSWIT UTILITY PROGRAMS
159

OSWIT USER'S MANUAL 57

*FILESNIFF

Utility Program

Purpose: To print information about the files on the disk
in the main drive.

Logical I/O Units Referenced

SPRINT - The file information
SERCOM - Fatal open error messages(should not

occur)

Parameters: The par field is used to specify what files are
to be sniffed.

Description: If no par field is specified then all files that
do not begin with an asterisk will be sniffed.

When "PAR3*" is specified all files on the
disk will be sniffed. Also the number of blocks
allocated to all files listed in the catalog,
number of blocks listed in the bitmap, and the
number of free blocks remaining will be printed.

Note - for "PAR^" the number of blocks listed in
the catalog should equal the number of blocks in
the bitmap. If they do not then the file
structure on the disk is defective.

If "PAR=filename" is specified then only
that particular file is sniffed. If the file
doesn't exist then an appropriate message is
printed out.

When "PAR=FI?,, is specified, all files
beginning with the characters "FI" are sniffed.
The "?" may appear only as the last character of
the file name fragment. If"PhR=7" is specified,
the resultant action is the same as "PAR=*".

When "PAR=FULL" is specified, all non-
asterisk files are sniffed as when no nPAR="
field is specified. However, extended file
information is printed out - file size, truncated
size, extended size, and start address. When
"FULL" is appended to any parameter field, this
extended information is printed out.

OSWIT UTILITY PROGRAMS
160

58 OSWIT USER'S MANUAL

Example(s): RUN *FILESNIFF PAR=*

RUN *FILESNIFF PAR=OS?FULL

= (FILE NAME) (FILE SIZE) (TRUNC SIZE) (EXT SIZE)

= OS.V4.0

= OS.V4.1

60

64

45

64

46

60

60

66 = OS.V4.2 66
=150 BLOCKS LISTED IN *CATALOG
=250 BLOCKS LISTED IN *BITMAP
=232 FREE BLOCKS

RUN *FILESNIFF SPRINT=FILEINFO PAR=PR0BLEM1

RUN *FILESNIFF PAR=FULL

= (FILE NAME) (FILE SIZE) (TRUNC SIZE) (EXT SIZE)

= X 10

= SWFLIP 1

= TRAININT 1

= OS 60

= V3.1 64

= V2.6 45
=181 BLOCKS LISTED IN *CATALOG
=265 BLOCKS LISTED IN *BITMAP
=247 FREE BLOCKS

3

1

1

45

64

45

10

1

1

60

60

70

OSWIT UTILITY PROGRAMS
161

OSWIT USER'S MANUAL 59

*FILES11

Utility Program

Purpose: To allow the user to create, destroy, empty,
truncate, and rename files.

Description: *FILES11 is an interactive program to allow file
manipulation by the user. The command syntax is
as follows:

CREATE filename [size]
DESTROY filename [!,OK,O.K.]
EMPTY filename [!,OK,O.K.]
OSWIT
RENAME filenamel filename2 [!,OK,O.K.]
TRUNCATE filename

A description of these commands follows:

CREATE filename [size]

The CREATE command is used to create a file
on the floppy disk. If size is not
specified, then it is created with a size of
1 block (512 bytes long) . Otherwise it is
created with the number of blocks specified.
The initial size of the file Ti also the
amount by which the file will be extended
when necessary. The size of a file cannot
exceed 255 blocks. The filename is limited
to 10 characters in length. If the specified
filename already exists then an error
message will be printed.

DESTROY filename [!,OK,O.K.l

The DESTROY command will remove a filename
entry from the catalog and release its
blocks to the free block pool. If
confirmation is not given on the destroy
command a prompt will be issued. Any
responses other than expected will cause the
command not to be executed. An error will
occur if the filename specified does not
exist. If the optional parameters are
omitted, then confirmation is required
before the file is destroyed.

OSWIT UTILITY PROGRAMS
162

60 OSWIT USER'S MANUAL

EMPTY filename [1,0K,O.K.]

The EMPTY command will empty a file by
writing an end of file mark as the first
thing in the file. The size of the file does
not change when it is emptied, but the
truncate size is set to 1. If the specified
filename does not exist then an error
message will be printed. Confirmation is
required as in the destroy command.

OSWIT

The OSWIT command will return control to
OSWIT without unloading the program. If a
end-of-File is typed (cntl-c) then the
program will be unloaded and control passed
to OSWIT.

RENAME filenamel filename2 [!,OK,O.K.]

The RENAME command will change the name of a
file from filenamel to filename2. An error
occurs if filenamel does not exist or if
filename2 already exists. Confirmation is
required as in the destroy command.

TRUNCATE filename

The TRUNCATE command is used to free unused
blocks at the end of a file. The freed
blocks are returned to the pool of available
blocks. If the specified filename does not
exist then a error message will be printed.
An empty file has a size of 1.

Example(s): RUN *FILES11

CREATE FILE1
CREATE OXSNARD 50
DESTROY OXSNARD OK
TRUNCATE FILE1
EMPTY FILE1 O.K.
RENAME FILE1 PTAW !

OSWIT UTILITY PROGRAMS

163

OSWIT USER'S MANUAL 61

*LINK11

Utility Program

Purpose: To link relocatable object files into an absolute
load module.

Logical I/O units Referenced

GUSER - Commands for the link-editor are read
through this unit.

SERCOM - Errors and other linkage information are
output here.

Description; The link editor is designed to be an interactive
program, although it can also read it's commands
from devices other than the console by
reassigning GUSER. This program requires a fairly
large amount of memory to operate (at least a 24K
system), so as much memory should be made
available as possible (eg. SET DEBUG=GFF). A
stack size of 1024 bytes is sufficient.

The basic commands accepted by the link
editor are as follows:

CLEAR
LINK <FILENAME>
MAP [<FILE OR DEVICE>]
SET <SYMBOL> <VALUE>
SYMBOL <SYMB0L NAME>
STOP
WRITE <FILE OR DEVICE>
?
*

A description of these commands follows:

CLEAR

To clear out any previously linked programs
from the link editors symbol table. This
command is done automatically when the
program is started, it is needed only to
generate multiple load files or to erase bad
input from the symbol table.

OSWIT
164

UTILITY PROGRAMS

62 OSWIT USER'S MANUAL

LINK <FILENAME>

This command will cause the specified file
or device to be read and all of it's symbol
and relocation information to be stored, the
filename is also stored for use when a write
command is issued.

MAP [<FILE OR DEVICE>]

To produce an octal load map of all the
symbols currently in the symbol table. If
the optional file or device name is given
then the map will be written on that file or
device.

SET <SYMBOL> <VALUE>

This command is used to set the current load
address and entry point. If the symbol "@"
is specified the next module to be linked
will be linked starting from the specifed
address. As each module is read the "9"
pointer is automatically advanced. The
default value of this symbol is octal 400.
It is set to this value when the program is
started or when a clear command is issued.

If the symbol "#" is specified the
entry point will be set to the specified
value. The entry point is set to zero when
the program is started and when a clear
command is issued. This value will be set to
the start of the first csect if it has not
been changed by an entry on an END card or
by the set command. The final value will be
that given on the last end card read or last
entry command given. If neither of these
modified the at point then it will point to
the first csect linked.

STOP

To terminate execution of the program.
Reading an endfile from GUSER will have the
same effect.

SYMBOL <SYMB0L NAME>

This command will cause the value of the

OSWIT UTILITY PROGRAMS

165

OSWIT USER'S MANUAL 63

specified symbol to be printed. If the the
symbol is currently undefined then an
appropriate message is printed.

WRITE <FILE OR DEVICE>

When the write command is issued a check
will be made to see if all symbols have been
resolved. Any unresolved symbols will be
printed and the write will be aborted.

A second pass is made through all the
files to extract all the text information.
As this information is read the load module
is generated and written on the specified
file or device.

This command will cause a list of all
unresolved symbols to be printed.

Any text folowing an asterisk is regarded as
a comment and will be ignored.

Note - there must be at least one blank
immediately after the asterisk.

Example(s): RUN *LINK11
LINK SERVO.OBJ
WRITE SERVO.LOAD
MAP SERVO.MAP
STOP

RUN *LINK11
SET @ 400
SET # 1000
LINK FILE1

* THE UNRESOLVED SYMBOLS WOULD BE PRINTED HERE
LINK FILE2
SET @ 10000
LINK FILE3
WRITE FILE4
CLEAR
LINK ZZZ
WRITE YYY
STOP

OSWIT UTILITY PROGRAMS

166

64 OSWIT USER'S MANUAL

*LOADCOPY

Utility Program

Purpose: To read a load file byte by byte and convert it
to load records.

Logical I/O Units Referenced:

SCARDS - The load file to be copied.
SPUNCH - Where to write the load records.
SERCOM - Completion and error messages.

Description: This program will input a byte oriented load file
and output a record oriented load file. The paper
tape reader(*READER*) and MTS{*MTS* OSWIT version
2.6) are byte oriented devices. It is illegal to
just issue a copy on these devices. The input is
checked for the following errors:

1 - Checksum errors.
2 - Premature end of file on scards
3 - Missing or invalid start record.

Example(s): RUN *LOADCOPY SCARDS=*MTS* SPUNCH=MYLOADFILE

RUN *LOADCOPY SCARDS=*READER* SPUNCH=ATAPELOAD

RUN *LOADCOPY SCARDS=NEWOS SPUNCH=*OSWIT
SERCOM=*DUMMY*

OSWIT UTILITY PROGRAMS
167

OSWIT USER'S MANUAL 65

*PATCH

Utility Program

Purpose: To make patches to floppy files containg absolute
load modules.

Logical I/O Units Referenced:

GUSER - To read patch statements from the user.

Description: When started the program will be in file request
mode. The user should enter the name of the file
to be patched. If a legal name is entered then
patch mode will be entered. Otherwise a new
filename will be requested. If a control-c is
entered the program will terminate execution.

There are two legal commands in patch mode,
ALTER & CSECT. These commands operate identically
to those in the OSWIT debugger. All ALTER
commands are converted to load records and stored
in the file being patched so the next time the
file is loaded the patches will be in place. If a
control-C is entered while in patch mode, control
will revert to file request mode.

Example(s): RUN *PATCH
EXECUTION BEGINS
ENTER NAME OF FILE TO BE PATCHED.
7SUPERTRAIN
) CSECT 400
) ALTER +20 137 +1254
) AR 20 100
) [CNTL-C]
ENTER NAME OF FILE TO BE PATCHED.
?[CNTL-C]
EXECUTION TERMINATED

OSWIT UTILITY PROGRAMS
168

66 OSWIT USER'S MANUAL

*TIME

Utility Program

Purpose: To print the current time of day.

Logical I/O Units Referenced:

SPRINT - all program output

Description: The contents of the time of day clock will be
converted to a text string and written out.

Example(s): RUN *TIME
EXECUTION BEGINS
TIME=21:34:16.3945
EXECUTION TERMINATED

OSWIT UTILITY PROGRAMS
169

OSWIT USER'S MANUAL 67

♦VERIFY

Utility Program

Purpose: To detect unusable blocks on a floppy disk.

Logical I/O Units Referenced:

SPRINT - All bad block information output.

Description: This routine will scan the disk in the main drive
for bad disk blocks. It will first read the block
to be tested into a buffer. Then a test pattern
will be written out and verified. Next the
complement of the test pattern wil be written and
verified. Finally the original block contents
will be written out and verified.

The message "read error" will be printed if
the block contained a bad checksum. The message
"write error" will be printed every time a write-
verify operation fails.

This program takes about 9 minutes to run
because of the Targe number of I/O operations. It
Ti not recommended that this program be
Tnterruped since a test pattern could get left Tn
an unfortunate spot on the dislc.

Example(s): RUN *VERIFY

OSWIT UTILITY PROGRAMS
170

68 OSWIT USER'S MANUAL

Appendix A: OSWIT ERROR MESSAGES

Illegal memory reference (bus time out)
Illegal instruction
Floating point exception
Bad EMT number
Buffer system impure
There is nothing to restart
Command unknown
End of disk on write
Buffer overflow
Stack size too big
Error in set command
Incorrect format for filename
File doesn't exist
MTS is not connected
Missing or bad parameter or filename
Checksum error during loading
Missing or invalid start address ■
There is no program loaded
Input line len >255
Illegal unit
Illegal file assignment string format
Tasker - no buffers
Tasker - undefined ID
Tasker - time CO
Tasker - stack error
***Task rescheduling has occurred
Illegal device for EMT WHEN
No buffer for I/O queueing
Unit NN: bad I/Otype
Byte bof has run out of buffer
RC not 2 when I/O queued
Disk read error
Write verify error
Bad file structure
Open getbuf error
Disk removed while no I/O
Grow getbuf error
SRCHCAT catalog file error
Squeeze gelfat error
Squeeze disk read error
Finfo getbuf error
Finfo disk read error
Finfo disk write protect
Finfo write error - will retry

OSWIT ERROR MESSAGES
171

OSWIT USER'S MANUAL 69

Appendix B: OSWIT SYSTEM DIRECTIVES

7.3 System directive overview

All LSI-11 operation codes from 1040008 to 1043778 are EMT
instructions. These instructions represent supervisor "calls"
which transmit information to OSWIT to perform predefined system
functions. When an EMT is encountered, the processor traps to
the EMT trap vector located at 308, loads the EMT handler
routine address from 308 and the new processor status word from
328 and executes the EMT routine handler. This handling routine
in OSWIT transfers control to specified routine to perform the
pre-defined system function. Control is subsequently returned to
instruction after the EMT instruction.

For a complete description of the EMT instruction and the
LSI-11 interrupt facility see DEC'S Microcompuer Manual, 1976.

The next section describes the EMT routines incorportated
into OSWIT.

OSWIT SYSTEM DIRECTIVES
172

70 OSWIT USER'S MANUAL

7.4 EMT Descriptions

AT

EMT Routine

Purpose: To schedule a task at a particular time of day.

Calling Paramters:

{SP)+4
lo 16 bits of time of day

(SP)+2
hi 16 bits of time of day

(SP)
task ID

Remarks: This routine will schedule a task to be started
at the time of day specified. The time is the
number of hundreds of micro-seconds since
midnight. It must be a positive 32 bit integer
less than 864,000,000(24*3600*10000).

The EMT number of this routine is 42.

Example(s) *
*
*

6 PM = 18*3600*10000 = 9887*(2**16)+45568

PUSH TLO
PUSH THI
PUSH TASK ID

MOV =45568,-(SP)
MOV =9887,-(SP)
MOV ID,-(SP)

EMT AT SCHEDULE THE TASK

Error(s) An error will occur if an illegal ID is passed to
the tasker.

OSWIT SYSTEM DIRECTIVES
173

72 OSWIT USER'S MANUAL

Purpose:

BIN20

EMT Routine

To convert one binary word into octal ASCII
characters.

Calling parameters:

SP+4
: word to be translated

SP+2
: size of buffer area

SP
: address of buffer area

Return parameters:

Remarks

The converted word is returned in the buffer and
the stack is clear.

The word is translated into octal ASCII
characters and placed right justified into the
field. If the field is too small it will be
filled with asterisks. If the field is too large
it will be padded on the left with blanks

The EMT number for this routine is 1.

ample(s): MOV VALUE,-(SP)
PUSH VALUE

MOV =BUFFER,-(SP)
PUSH BUFFER ADDRESS

MOV =2,-(SP) PUSH SIZE
EMT BIN20 GO DO IT

VALUE DC Q'llllll'
BUFFER DS 2C BUFFER

Error(s)

The result of this run will place ** in buffer
because the field is too small.

The field will be filled with asterisks on field
overflow.

OSWIT SYSTEM DIRECTIVES
174

OSWIT USER'S MANUAL 7 3

CANCEL

EMT Routine

Purpose: To cancel any further executions of a particular
definition of a task.

Calling Paramters:

(SP) : task ID

Remarks: This routine will cancel any further executions
of the specified ID. If the task is currently
executing it will be allowed to finish. The TCB
will be removed from all scheduling queues.

The EMT number of this routine is 40.

Example(s) : MOV ID,-
(SP) PUSH THE TASK ID

EMT CANCEL CANCEL THE TASK

Error(s): An error will occur if a illegal task ID is
passed.

OSWIT SYSTEM DIRECTIVES
175

74 OSWIT USER'S MANUAL

CLOSE

EMT Routine

Purpose: To disconnect an internal unit number from a file
or device, and reconnect the unit to the default
device (*MSOURCE* or *MSINK*).

Calling parameters:

SP
the unit number

Return parameters:

None

Remarks: A single unit specified must be between 0 and 30.

All units may be closed by specifying a negative
unit number.

The EMT number for this routine is 15.

Example(s)

MOV =10,-(SP) CLOSE LOGICAL UNIT
EMT CLOSE
BCS BADUNIT IF ERROR

Error(s): If an illegal unit number occurs the C BIT is set
to "l''.

OSWIT SYSTEM DIRECTIVES
176

OSWIT USER'S MANUAL 75

DEFINE

EMT Routine

Purpose To create a task control block (TCB) and enter it
in the DEFINED queue.

Calling parameters;

(SP)+6
with
(SP)+4
{SP)+2
defined
(SP)
in

: processor status to start task

: priority of task (0-255)
: starting address of task being

: address of word to store task ID

Return paramters;

The task
location.

ID is returned in the specified

Remarks: This routine makes a task occurence known to the
operating system. A TCB is allocated and entered
into the defined queue. The address of the TCB
will be returned in the location specified for
the ID. The ID of the main task will be in
register 0 when it is started by a RUN or a START
command (Note - the address of the PAR string is
in Rl).

The starting address of the task is where a
task will be entered when it becomes active.
Multiple definitions of a single task can be
accomplished by making more than 1 call to DEFINE
with the same starting address since a task is
identified by its ID, not by its starting
address. This is useful if it is desired to
initiate a task on more than one occurence of an
event type. Examples might be to have a task
scheduled every 3 seconds and every 5 seconds, or
to schedule a task on multiple WHEN conditions.
Event types are grouped as follows:

1) timed events
2) ON and WHEN events

A single task definition may be queued on only

OSWIT SYSTEM
177

DIRECTIVES

76 OSWIT USER'S MANUAL

one of each event type
multiple definitions.
TCB's the task must be

To go higher you need
However to use multiple
reentrant.

A single task definition may be scheduled
for more than one execution. This can come about
by a task scheduling itself, a burst of events,
or a scheduling request coming in while the task
is blocked by a higher priority task. The maximun
number of times a single TCB can be scheduled at
one time is 255. Any further requests are ignored
until the count drops below 255.

The pno
are executed
be activated
Within a prio
same order th
is such tha
control from
if the higher
I/O or some o
the user task
5 through 25
for system us
with a priori

rity determines the
once scheduled. Sch

in order of dec
rity level they are
ey were scheduled,
t no lower prior
a higher or same pr
or same priority t

ther process. It is
s restrict themselv
0. The other priori
e. The main task
ty of 10.

order that tasks
eduled tasks will
reasing priority.
started in the

Scheduling policy
ity task can take
iority task, even
ask is blocked by
recommended that

es to priorities
ties are reserved
will be started

The processor status allows tasks to be
started with interrupts ON or OFF. Except for
special cases tasks should run with interrupts
ON.

The EMT number for this routine is 33.

Example(s): CLR
(SP) PUSH PROCESSOR STATUS(ION)

MOV =25,-(SP) PUSH PRIORITY
MOV =TASK,-

(SP) PUSH ADDRESS OF TASK
MOV =ID,-

(SP) PUSH ADDRESS OF ID
EMT DEFINE DEFINE THE TASK

TASK EQU ENTRY POINT OF T

ID DS H STORAGE FOR TASK

OSWIT SYSTEM DIRECTIVES
178

OSWIT USER'S MANUAL 77

DESTROY

EMT Routine

Purpose: To cancel any further executions of a task
definition and to destroy the TCB.

Calling Paramters:

(SP) : task ID

Remarks: This routine will cancel any further executions
of the specified ID. If the task is currently
executing it will be allowed to finish. As soon
as it finishes the TCB will be destroyed(the ID
will no longer be valid).

The EMT number of this routine is 41.

Example(s): MOV ID,-
(SP) PUSH THE TASK ID

EMT DESTROY DESTROY THE TASK

Error(s): An error will occur if an illegal ID is passed.

OSWIT SYSTEM DIRECTIVES
179

78 OSWIT USER'S MANUAL

DSKIO

EMT Routine

Purpose DSKIO performs physical block transfers with the
floppy disk unit. This is not the normal way of
doing I/O to the disk (see Tnitead OPEN, READ,
WRITE, WAIT, etc.)

DSKIO handles queing of all I/O for a given disk
unit, on strictly a first in, first served basis.
It will perform three commands: READ, WRITE, and
WRITE-VERIFY. DSKIO does all handling of the
block checksum. It generates it for a WRITE or a
WRITE-VERIFY, and checks it on a READ. A WRITE-
VERIFY operation is accomplished by a WRITE
followed by a READ, and then a word by word
comparison.

Calling parameters:

SP
address of DSKBUF (see figure 1)

Rl
: points to PHYTAB entry for disk

Return parameters:

None (from the EMT)

Remarks

SP

SP+2

SP+4

SP+6

DSKIO queues the request and does an immediate
return to the calling task. Upon the interrupt
from the disk after a READ, WRITE or the READ
portion of a WRITE-VERIFY operation: DSKIO will
check the checksum and verify as necessary, and
then do a JMP to the user's program at the
address specified by DSKENT (see figure 1). On
the stack will be:

ADDRESS OF dskbuf

ADDRESS OF THE phytab FOR THE DISK

PC of interrupted task

PS of interrupted task

The current PSW will indicate errors as follows:

C-BIT set :
the checksum is incorrect on a READ or the block does not verify
on a WRITE-VERIFY.

OSWIT SYSTEM DIRECTIVES
180

OSWIT USER'S MANUAL 79

V-BIT set :
unable to get required buffer to perform read back and
verification on a WRITE-VERIFY.

data format

the parameters for DSKIO ar organized as in
figure 1, usually in the form of a DSECT.

DSKBUF
DSECT

DSKLINK
DS A

DSKCMND
DS F

DSKCNT
DS F

DSKENT
DS A

DSKBLOCK
EQU *

DSKLINKB
DS F

DSKLINKF
DS F

DSKCHKSM
DS F

DSKDATA
DS 253F

LINK TO NEXT I/O REQUEST

COMMAND TO PERFORM

OF WORDS TO TRANSFER

ADDRESS TO GO TO WHEN DONE

DISK I/O STARTS HERE

BACKWARD LINK (DISK ADDR)

FORWARD LINK (DISK ADDR)

CHECKSUM

ACTUAL DATA GOES HERE

where XX is

figure 1

DSKLINK is strictly for DSKIO's internal use in
queing up requests.

DSKCMND is the command DSKIO is to perform, which
is specified as follows:

X XYY YYZ ZZZ ZZZ ZZO

00 READ

OSWIT SYSTEM
181

DIRECTIVES

80 OSWIT USER'S MANUAL

01 WRITE

10 READ-(NO CHECKSUM CHECKING)

11 WRITE-VERIFY

where YYYY is reserved for future expansion ?????

where Z ZZZ ZZZ ZZO is the block number to transfer

DSKCNT is the number of words to transfer:
3DSKCNT256. specifing DSKCNT<256
is equivalent to padding the last
256-DSKCNT words with O's (on a
write only). The DSKCNT specified
for a READ should be the DSKCNT
specified when that block was
written, otherwise a checksum
error will (should) occur.

DSKENT is the address jumped to by the interrupt
handler when this I/O request is
complete (see operation
description).

DSKBLOCK The next DSKCNT words are what actually
get transfered to/from the disk.

DSKLINKB is the pointer to the previous disk
block in a logical file structure.

DSKLINKF is the pointer to the next disk block
in a logical file structure. DSKIO
will, when there is no quequed
I/O, perform a SEEK on the block
specified by DSKLINKF (if non-
null) of the last block
transfered. If the DSKLINKB and
DSKLINKF are not being used, they
should be set to null links (f-
1").

DSKCHKSM is the checksum returned from a READ or
space for the checksum generated
on a WRITE.

DSKDATA is DSKCNT-3 words of whatever you like.

The EMT number for this routine is 31.

Example(s):

MOV @=DISKVEC,R0 GET ADDR OF DISK

OSWIT SYSTEM DIRECTIVES
182

OSWIT USER'S MANUAL 81

TST (R0) +

MOV §ROfRl
MOV =MYBUF,-

(SP) PUSH DSKIO BUFFER ADDR
CLR FLAG
EMT DSKIO

TST FLAG
BEQ *-4

INT CMP (SP)+,(SP)+
INC FLAG
RTI

FLAG DS F

MYBUF DS F
DC o'lvve1

DC Fn256"

DC A-INT"

DS 256F

BUMP PTR TO POIN

FETCH PHYTAB ADD

INIT DONE FLAG
START THE I/O

CHECK IF I/O DON
LOOP IF NOT

THROW AWAY PHYAD
SET DONE FLAG
RETURN

LINK SPACE FOR D
READ BLOCK 1776

256 WORDS TO TRA

INTERRUPT HANDLE

THE ACTUAL DATA

OSWIT SYSTEM
183

DIRECTIVES

82 OSWIT USER'S MANUAL

D2BIN

EMT Routine

Purpose To convert an ASCII character string of decimal
digits to its equivalent two's complement value.

Calling parameters:

SP+2
: field length to scan

SP
: address of word to convert

Return parameters:

If the C BIT is clear then:

Remarks;

Example(s;

SP
: the binary value of the number converted

SP+2
: the address of the character which caused

conversion to stop

otherwise the stack is clear.

The first characters may be blanks, a + sign, or
a minus sign. Thereafter all characters must be
decimal ASCII characters until the number
terminates, or the field length is exhausted. The
range on the numbers to convert is 32767 to -
32767.. If no error has occurred (C BIT clear) the
address of the character which caused conversion
to stop, or the address of the byte following the
field length specified, is placed on the stack.
The converted number is placed on top of the
stack. If the number is out of range (C BIT set)
the stack is clear (no number is returned). If a
nondigit was encountered before the end of the
string, the converted number is returned as
above, but the V BIT will be set and the C BIT
will be clear. Then if desired, the user may test
for this condition.

The EMT number for this routine is 2.

MOV =3,-(SP) PUSH FIELD LENGTH
MOV =BUFFER,-(SP)

PUSH BUFFER ADDRESS
EMT D2BIN GO DO IT
BCC OK NO ERRORS

OSWIT SYSTEM DIRECTIVES
184

OSWIT USER'S MANUAL 83

OK
JMP ERRORHAN TO ERROR HANDLER
MOV (SP)+,VALUE

GET VALUE
MOV (SPj+jNEXTCHAR

GET BREAK ADDRESS

BUFFER DC
VALUE DS
NEXTCHAR DS

C' 167'
F
F

Error(s)

This routine will return a binary 16 on top of
the stack, followed by the address of the "7".

A number outside of range (32767 to -32767) is
shown by setting the C BIT to "1".

OSWIT SYSTEM
185

DIRECTIVES

84 OSWIT USER'S MANUAL

ERROR

EMT Routine

Purpose: To output a standardized error message followed
by a call to OSWIT for user interaction.

Calling parameters:

SP+2
: logical unit number

SP
: the buffer address

Return parameters:

None

Remarks: The logical unit specified must be between 0 and
30.

This routine will return control to OSWIT,
however control may be returned to the user
program via a RESTART command.

The first byte of the buffer must specify the
buffer length.

The EMT number for this routine is 19.

Example(s): MOV

MOV

EMT

ERRORMSG DC

=SERC0M,-(SP)
UNIT NUMBER

=ERRORMSG,-(SP)
ADDRESS OF MESSAGE

ERROR

Error(s)

H"24",0'THIS IS AN ERROR MESSAGE'

this call will print out:

***ERROR, THIS IS AN ERROR MESSAGE

control will be passed to OSWIT

None

OSWIT SYSTEM DIRECTIVES
186

OSWIT USER'S MANUAL 85

EVERY

EMT Routine

Purpose: To reschedule a task repeatedly at a fixed time
interval.

Calling Pararaters;

(SP)+4
(SP)+2
(SP)

lo 16 bits of time interval
hi 16 bits of time interval
task ID

Remarks: This routine will schedule a task every N ticks
of the real time clock (a clock tick occurs every
lOOuS). n is a non-zero positive 32 bit integer.

The EMT number of this routine is 35.

Example(s): MOV =10000,-
(SP) PUSH LO TIME(1 SECOND)

MOV
MOV

=0,-(SP)
ID,-(SP)

PUSH HI TIME
PUSH TASK ID

EMT EVERY PUT TASK IN TIME

Error(s) An error will occur if an illegal ID is passed to
the tasker.

OSWIT SYSTEM
187

DIRECTIVES

86 OSWIT USER'S MANUAL

EXIT

EMT Routine

Purpose: To return all resources to the operating system.

Calling parameters:

None

Remarks: Program execution is terminated and all memory
space is returned to the system. All logical I/O
units are reset to *MSOURCE* or *MSINK*. Control
is not returned to the user but rather to OSWIT.

The EMT number for this routine is 23.

Example(s): EMT EXIT TO SYSTEM

Error(s): None

OSWIT SYSTEM DIRECTIVES
188

OSWIT USER'S MANUAL 87

GETBUF

EMT Routine

Purpose: To have the operating system allocate a temporary
buffer for the user.

Calling parameters

SP
: number of bytes desired

Return parameters:

SP
: address of the first word in the buffer if the

C BIT is set to "0"; otherwise the stack is
clear.

Remarks: The calling parameter is the number of bytes
desired. All allocations begin on a word boundary
and are an integral number of words. The address
returned is the word address of the first word in
the buffer.

the EMT number for this routine is 5.

Example(s): MOV =160/-(SP)
ASK FOR 160 BYTES

EMT GETBUF GO GET IT
BCS NOSPACE NO SPACE LEFT
MOV (SP)+,STRADR

GET STARTING ADDRESS

This example will request from the operating
system 160 contigious bytes (80 words) of storage
and if this amount of storage exists will place
the starting address in STRADR.

Error (s): The C BIT is set to "l" if there is not enough
space to accommodate the request.

OSWIT SYSTEM DIRECTIVES
189

88 OSWIT USER'S MANUAL

GETPAR

EMT Routine

Purpose: To build a stack of ADCONS which point to
parameters and modifier names in a string given
it for parsing.

Calling parameters:

SP+2
: string starting address (byte containing length)

SP
: address of where search is to begin

Return parameters:

SP
: address of break character

SP+2
: address of first non-break character

SP+4
: number of modifier names

SP+6
: addresses of each modifier name are on stack

Remarks: GETPAR expects the first byte of string to
contain the length of string followed by bytes of
data to be parsed.

Returned on the top of the stack is the address
of the next byte to be parsed followed by the
address of the first parameter seen, which is
followed by the number of modifier names followed
by an address for each modifier name.

****** break characters are: " " and ","

****** modifier characters are: "@" and n="

The EMT number for this routine is 9.

Example(s): MOV =STRING,-(SP)
ADDRESS OF THE STRING

MOV =STRING+1,-(SP)
WHERE TO START SCANNING

EMT GETPAR
BCS NOPARAM

OSWIT SYSTEM DIRECTIVES
190

OSWIT USER'S MANUAL 89

STRING DC fT'lO"
DC C FILE@BIN '

In this example(s):

FILE is the parameter

@BIN is a modifier

@ is the modifier character

BIN is the modifier name

This example(s): will return the address of the
blank following the "N" on the top of the stack
followed by the address of the "F" on the stack
followed by a 1 to indicate one modifier name,
followed by the address of the "B".

Error(s): If nothing is left in the string the C BIT will
be set to "1" and the stack will be clear.

OSWIT SYSTEM DIRECTIVES
191

90 OSWIT USER'S MANUAL

HALT

EMT Routine

Purpose: To terminate the current execution of a task.

Calling Paramters:

None

Remarks: This routine will terminate execution of the task
that was active at the time of the call. If the
active task had multiple executions scheduled
then it will be restarted and the execution count
decremented (except if it had been cancelled). If
the task was scheduled for destruction then its
TCB will be destroyed at this time. when there
are no tasks left able to execute the tasker will
return control to OSWIT, otherwise it will wait.

The EMT number of this routine is 39.

Note - this routine should be used to terminate
all tasks. If EXIT is used instead then all tasks
in the system will be destroyed and control
returned to OSWIT.

Example(s) :
EMT HALT TERMINATE EXECUT

Error(s): An error will occur if the stack has had more
items popped off than were on it when the task
was started.

OSWIT SYSTEM DIRECTIVES
192

OSWIT USER'S MANUAL 91

IN

EMT Routine

Purpose: To schedule a task for execution
amount of time.

in certain

Calling Paramters:

(SP)+4
(SP)+2
(SP)

lo 16 bits of time interval
hi 16 bits of time interval
task ID

Remarks: This routine will schedule a task in N ticks of
the real time clock (a clock tick occurs every
lOOuS). n is a non-zero positive 32 bit integer.

The EMT number of this routine is 34.

Example(s): MOV =10000,-
(SP) PUSH LO TIME(1 SECOND)

MOV
MOV

EMT

=0,-(SP)
ID,-(SP)

IN

PUSH HI TIME
PUSH TASK ID

PUT TASK IN TIME

Error(s) An error will occur if an illegal ID is passed to
the tasker.

OSWIT SYSTEM DIRECTIVES
193

92 OSWIT USER'S MANUAL

LISTEN

EMT Routine

Purpose: OSWIT command language handler.

Calling parameters:

None

Return parameters:

None

Remarks: A call to this routine will invoke OSWIT's
command language handler. LISTEN will return to
the user's program if he enters a RESTART
command.

The EMT number for this routine is 18.

Example(s): EMT LISTEN

Error(s): None

OSWIT SYSTEM DIRECTIVES
194

OSWIT USER'S MANUAL 93

LOAD

EMT Routine

Remarksi

Purpose: To load a file into main memory.

Calling parameters:

SP
: filename

Return parameters:

SP
: the load address if the C BIT is set to "0";

otherwise an error code

The filename string must begin with one byte
giving the length of the filename. The contents
of the named file are loaded into main memory,
however, execution is not begun.

The EMT number for this routine is 7.

MOV =STRING,-(SP)
FILE ZIPPY

EMT LOAD IS TO BE LOADED
BCC OK NO ERRORS
ADD PC,@SP BRANCH TO
MOV @(SP)+,PC ...ERROR ROUTINE:
DC A^OFILE" NON-EXISTANT FILE
DC A"BADUNIT"

ILLEGAL UNIT NUMBER
DC A'^ADEMT" ILLEGAL FORMAT
DC Al,BADSUMn CHECKSUM ERROR
MOV (SP)+,LOADADR

SAVE ADDRESS

Example(s)

OK

STRING
LOADADR

Error(s)

DC H'^^C'TESTPROG*
DS F

If an error occurs the C BIT is set to "l" and
one of the following error codes placed on the
stack:

non-existant file

: illegal unit number

: bad filename format

OSWIT SYSTEM DIRECTIVES
195

94 OSWIT USER'S MANUAL

8
checksum error

OSWIT SYSTEM DIRECTIVES
196

OSWIT USER'S MANUAL 95

LOCK

EMT Routine

Purpose: To lock the active task into the active state,

Calling Paramters:

None

Remarks: The task that was active at the time of the call
will have it's priority raised to 250. This
effectivly makes it the highest priority user
task giving it exclusive control of the CPU.

The EMT number for this routine is 44.

Example(s):
EMT LOCK GET EXCLUSIVE CPU

Error(s) : None

OSWIT SYSTEM DIRECTIVES
197

96 OSWIT USER'S MANUAL

OPEN

EMT Routine

Purpose: To provide a connection between an internal unit
number and a file or device.

Calling parameters

SP
: the address of the assignment string

Return parameters:

(SP) :return code if VBIT is set,
otherwise stack is clear.

Remarks: The length of the string is contained in the
first byte of the string.

The assignment string must be of the form:

unit#=pseudodevice

Where unit# can be 0 - 30 or one of the following
equivalent strings.

Device equivalences are provides to be compatible
with mts as follows:

SCARDS = 26

GUSER ■ 27

SPRINT = 28

SPUNCH = 29

SERCOM = 30

If the unit was already opened, it is closed, and
then reopened.

Example(s)

The EMT number for this routine is 14.

MOV =STRING,-(SP)
OPEN SCARDS

EMT OPEN ... WITH *MTS*
BVC OPENOK BRANCH IF NO ERROR
ADD PC,@SP VECTOR TO

OSWIT SYSTEM DIRECTIVES
198

OSWIT USER'S MANUAL 97

MOV @(SP)+iPC PROPER HANDLER
DC A^DNEXIST"
DC A"BADSTR"

STRING DC Hria^C'SCARDS^MTS*'

Return codes:

4 : File or pseudo-device non-existant

6 : Illegal string format

8 : Bad unit number

OSWIT SYSTEM DIRECTIVES
199

98 OSWIT USER'S MANUAL

02BIN

EMT Routine

Purpose To convert an ASCII character string of octal
digits to its equivalent two's complement value.

Calling parameters:

SP+2
: field length to scan

SP
: address of word to convert

Return parameters:

if the C BIT is clear then;

Remarks:

Example(s)

SP
: the binary value of the number converted

SP+2
: the address of the character which caused

conversion to stop;

Otherwise the stack is clear.

The first character may be blank, a plus, or a
minus sign. Thereafter all characters must be
octal ASCII characters until the number
terminates, or the field length is exhausted. The
range on the number to convert is 177777 to 0. If
no error has occurred (C BIT is clear) the
address of the character which caused the
conversion to stop, or the address of the byte
following the field length specified is placed on
the stack. The converted number is placed on top
of the stack. If the number is out of range
(C BIT set) the stack is clear (no number is
returned). If a nondigit was encountered before
the end of the string, the converted number is
return as above, but the V BIT will be set and
the C BIT will be clear. Then if desired, the
user may test Eor this condition.

The EMT number for this routine is 3.

MOV =4,-(SP) PUSH FIELD LENGTH
MOV =BUFFER,-(SP)

PUSH BUFFER ADDRESS
EMT 02BIN GO DO IT
BCC OK NO ERRORS

OSWIT SYSTEM DIRECTIVES
200

OSWIT USER'S MANUAL 99

OK
JMP ERRORHAN TO ERROR HANDLER
MOV {SP)+,VALUE

GET VALUE
MOV (SP)+,NEXTCHAR

GET ADDRESS OF BREAK

BUFFER DC C 167'
VALUE DS F
NEXTCHAR DS F

This routine will return a octal 167 on top of
the stack.

Error(s) Number outside of range (177777 to 0) shown by
C BIT being set to "1".

OSWIT SYSTEM
201

DIRECTIVES

100 OSWIT USER'S MANUAL

PARSE

EMT Routine

Purpose: This is a general table driven parser routine. It
is capable of parsing input character by
character from the keyboard or a line at a time
from a core buffer.

Calling parameters:

SP+4
: string lengt

SP+2
: string address

SP
: table address

Return parameters:

SP
: 2* the number of the string that matched if the

C BIT is set to "0";
otherwise the stack is clear

Remarks: The "PARSE" EMT requires a table of strings
against which it will try to match the input
string. Each string in the table must be
proceeded by one byte which contains the length
of that string. A null string (length=0)
indicates the end of the table.

PARSE will compare the input string with the
entries in the table in the order in which
entries appear in the table. If a match is not
unique (e.g. RE will match RESTART or RESTORE),
PARSE will return the first match it finds in the
table. If no match is found, the C BIT is set to
"1". If one is found, it is set to "0", and 2*
the string number in the table will be returned
on top of the stack.

The EMT number for this routine is 8.

Example(s): MOV =LENGTH,-(SP)
PUSH STRING LENGTH

MOV =STRING,-(SP)
PUSH STRING ADDRESS

MOV =CMDTABLE,-(SP)
PUSH TABLE ADDRESS

EMT PARSE LOOK FOR MATCH

OSWIT SYSTEM DIRECTIVES
202

OSWIT USER'S MANUAL 101

BCS BADCMD BRANCH IF NO MATCH
ADD PC,@SP BRANCH TO
MOV @(SP)+,PC SERVICE ROUTINE FOR
DC A"CMD1" ...CMD1
DC A,,CMD2" CMD2
DC A"CMD3" CMD3

CMDTABLE DC
DC

XRESTART DC
DC

XRESTORE DC
DC

XEND DC

A^XRESTART-CMOTABLE-l"
C'COPY'
Al-XRESTORE-XRESTART-l"
CRESTART'
Al"XEND-XRESTORE-l"
CRESTORE'
H^"

STRING
LENGTH

DC
EQU

C'RES'
*-STRING

Error(s)

The preceeding example will return a 4 on the top
of the stack to indicate-a match of the second
string.

If there was no match the C BIT is set to a "l".

OSWIT
203

SYSTEM DIRECTIVES

102 OSWIT USER'S MANUAL

READ

EMT Routine

Purpose: To read a logical record from a device.

Calling parameters:

SP+2
: logical unit number

SP
: the buffer address

Return parameters:

None

Remarks: The logical unit specified must be between 0 and
30.

Although the routine read returns immediately,
the transmission is not necessarily complete.

Upon return the first byte of the buffer will
contain the length of the input record.

***** jf the logical unit is assigned to the
terminal, EMT READ will echo back the read
characters onto the printer. An input line will
be terminated by entering carriage return
[pushing "RETURN" key] , but carriage return is
not placed in user buffer. When a new line is to
be read, the user is prompted with "?" [it is
possible to change this prompt character] , then
after "READ" operation termination a carriage
return and line feed will be supplied
automatically, however this happens as a result
of echoing back last "RETURN".

Both "BACK SPACE" [to delete the last character
read] and "DELETE" [to delete the whole input
line] keys on the dec-writer can be used.

NOTE: After issuing an "EMT READ", and before
issuing another "EMT READ" to the same device an
"EMT WAIT" should be issued first, in order to
make sure that the last read operation is
completed successfully.

The EMT number for this routine is 10.

Example(s) :

OSWIT SYSTEM DIRECTIVES
204

OSWIT USER'S MANUAL 103

MOV =SCARDS/-(SP)
READ FROM

MOV =BUF/-{SP)
...SCARDS (UNIT 26)

EMT READ ..• FROM BUFFER BUF
BCS BADUNIT IF ERROR

MOV =0,-(SP) WAIT FOR UNIT 26
MOV =X,8400,,-(SP) WAIT UNTIL DONE
EMT WAIT
TST (SP)+ POP UNIT NUMBER
ADD PC,@SP VECTOR TO
MOV @(SP)+/PC PROPER HANDLER
DC A-AOK"
DC A"EOF"
"DC AnREC2LONG"
DC A-CNTLZ"
• •

BUF DS 256C

Error(s): If an illegal unit number occurs the C BIT is set
to "l".

OSWIT SYSTEM DIRECTIVES
205

104 OSWIT USER'S MANUAL

READB

EMT Routine

Purpose: To read a byte from a logical unit.

Calling parameters:

SP+2
: logical unit number

SP
: address of the byte

Return parameters:

None

Remarks: The logical unit must be between 0 and 30.

Although the routine returns immediately, the
transmission is not necessarily complete.

***** NOTE: "EMT READB" will not echo back the
entered character, and does not print any prompt
character either, it merely reads the entered
character, all keys on the DECwriter are treated
the same, and will be placed in the user buffer.
Thus unlike the "EMT READ", no carriage return,
line feed , delete or back space are provided
here, user is responsible for such editting
procedures.

After ■ issuing an "EMT READB", and before issuing
the next "EMT READB", to the same device an "EMT
WAIT" should be issued first to make sure that
the previous read operation has been completed
successfully.

The EMT number for this routine is 12.

Example (s) :
MOV =SCARDS,-(SP) READ CHARACTER
MOV =BUF,-(SP) FROM SCARDS (UNIT 26)
EMT READB ... INTO BUF
BCS BADUNIT IF ERRORS

MOV =0,-(SP) WAIT FOR UNIT 26
MOV =X,8400,,-(SP) WAIT UNTIL DONE
EMT WAIT
TST (SP)+ POP UNIT NUMBER
ADD PC,@SP VECTOR TO

OSWIT SYSTEM DIRECTIVES
206

OSWIT USER'S MANUAL ' 105

MOV @(SP)+,PC PROPER HANDLER
DC A"AOK"
DC A-EOF"

BUF DS 1C

Error(s): If an illegal unit number occurs the C BIT is set
to "l".

OSWIT SYSTEM DIRECTIVES
207 •

106 OSWIT USER'S MANUAL

READW
■ ■

EMT Routine

Purpose: To read a word from a logical unit.

Calling parameters:

SP+2
: logical unit number

SP
: address of the word

Return parameters:

None

Remarks: The logical unit must be between 0 and 30.

Although the routine returns immediately, the
transmission is not necessarily complete.

After issuing an "EMT READW", and before issuing
the next "EMT READW" to the same device an "EMT
WAIT" should be issued first to make sure that
the previous read operation has been completed
successfully.

The EMT number for this routine is 24.

Example(s):
MOV =10,-(SP) READ WORD
MOV =BUF,-(SP) FROM UNIT 10
EMT READW ... INTO BUF
BCS BADUNIT IF ERRORS

MOV =X,0600',-(SP) WAIT FOR UNIT 10
MOV =X'8000,,-{SP) WAIT UNTIL DONE
EMT WAIT
TST (SP)+ POP UNIT NUMBER
ADD PC,@SP VECTOR TO
MOV @(SP)+,PC PROPER HANDLER
DC A"AOK"
DC A"EOF"
• •

BUF DS IF

Error(s): If an illegal unit number occurs the C BIT is set
to "1".

OSWIT SYSTEM DIRECTIVES
208

OSWIT USER'S MANUAL 107

RELBUF

EMT Routine

Purpose To release a buffer previously obtained through
GETBUF.

Calling parameters:

SP
address of the first word in the buffer to be

released

Return parameters:

None

Remarks The buffer beginning at the given address is
released. As the LSI has no memory protect
features, the user must be careful not to write
over any memory he has not been given by GETBUF,
and to return the correct address to RELBUF.
OTHERWISE THIS ROUTINE WILL LIKELY CAUSE THE
SYSTEM TO BOMB.

The EMT number for this routine is 6.

Example(s) : MOV

EMT
• •

STRADR DS

Error(s) :

STRADR,-(SP)
PUSH STARTING ADDRESS

RELBUF RELEASE IT

F PLACE ADDRESS IS STORED

Assuming that a previous GETBUF call has placed
an address in STRADR the buffer space so
designated will be released.

No errors are detected by this routine. However,
an attempt to release improper space will WREAK
UNKNOWN HAVOC upon things, which may not be
detected until after the next call to GETBUF.

OSWIT
209

SYSTEM DIRECTIVES

108 OSWIT USER'S MANUAL

RESET

EMT Routine

Purpose: To return ail resources to the operating system

calling parameters:

None

Return parameters:

None

Remarks: Program execution is terminated and all memory
space is returned to the system. All logical I/O
units are reset to *MSOURCE* or *MSINK*. Control
is returned to the user rather than to OSWIT,
which in most cases is very dangerous. It is
therefore recommended that unless the user needs
control to be returned to him/her, he/she issue
an EMT EXIT rather than EMT RESET.

The EMT number for this routine is 4.

Example(s): EMT RESET

Error(s) : None

OSWIT SYSTEM DIRECTIVES
210

OSWIT USER'S MANUAL 109

SCAN

EMT Routine

Purpose: To scan a character string for break characters.

calling parameters:

SP+6
: length of break characters

SP+4
: address of break character

SP+2
: length of string to scan

SP
: address of string to scan •

Return parameters:

SP
: address of scanned string

SP+2
: length of scanned string

SP+4
: Return codes:

SP+6
: updated address of string to scan

SP+8
: updated length of string to scan

SP+10
: address of break chars, (unaltered)

SP+12
: length of break chars, (unaltered)

Remarks: The address and length of the break characters
are returned unaltered for the next call.

The address and length of the string left to be
scanned beyond the break character found are
returned on the stack (for the next call).

Example(s)

The EMT number for this routine is 29

OSWIT SYSTEM DIRECTIVES
211

110 OSWIT USER'S MANUAL

CLR RO
MOVE EREAKS,-(;

*
MOV =BREAKS+1

MOVE STRING,-(:

*
MOV =STRING+1

SCANMOR EMT SCAN
EMT D2BIN
ADD (SP)+,R0
TST (SP) +
ADD PC,@SP
MOV §(SP)+,PC
DC A-Z"
DC A-SCANMOR
DC A"SCANMOR
DC A"SCANMOR

Z
*

ADD

HALT

=8,SP

STRING DC H-S^C'IO
BREAKS DC H-'S^C :;

SP) PUSH THE LENGTH AND
^(SP) * ADDRESS OF THE BREAK
* CHARS.

SP) PUSH THE LENGTH AND
^(SP) * ADDRESS OF THE STRING
* TO SCAN
SCAN TO A BREAK
KEEP A
* RUNNING TOTAL
POP OFF D2BIN PARAMETER
CHECK RETURN
* CODE FROM SCAN
END OF STRING

REMOVE STRING AND
BREAK CHAR. DESC.

H"5" ,0'10:20' <0R> STRING STRCON '10:20'
=' <OR> BREAKS STRCON ':;='

This program will halt with 30 (decimal) in rO

Return codes:

2

4

6

string was terminated by an "end of string"

the first break character caused termination

the second break character caused termination

Error(s) : None

OSWIT SYSTEM DIRECTIVES
212

OSWIT USER'S MANUAL HI

START

, EMT Routine

Purpose: To schedule a task for immediate execution.

Calling Paramters:

(SP) : task ID

Remarks: This will cause the specified task to be
immediatly inserted in the execute queue. If it
has a higher priority than the task that
scheduled it then it will begin execution,
otherwise it will be blocked until it becomes the
highest priority task.

The EMT number of this routine is 43.

Example(s):

MOV ID,-
(SP) PUSH THE TASK ID

EMT START START THE TASK

Error(s): An error will occur if an illegal ID is passed,

OSWIT SYSTEM DIRECTIVES
213

112 OSWIT USER'S MANUAL

WAIT

EMT Routine

Purpose: To determine the status (whether or not done) of
a previous I/O request and/or to wait for the
completion of one of a specified set of requests.

Calling parameters;

SP+2
a word whose bits correspond to the logical units

0 through 15 with bit 0 being unit 0.

SP
a word whose bits correspond to the logical units

16 through 30 with bit 0 being unit 16.

Return parameters:

If the V BIT is set then:

SP

Remarks:

Example(s)
WAIT

the unit number of the I/O task completed.

SP+2
the return code.

otherwise the stack is clear.

If bit 15 of the word on top of the stack is set
to 1, the system will wait until one of the
logical units corresponding to 1 bits set in the
calling parameters has completed its requested
I/O task. This unit number will be placed on top
of the stack the V BIT set to "l",
made to the calling program.

e word on top of th
checks the complet

If bit 15 of th
to 1 D, the system
the logical I/O
in the calling
waiting to the c
marked logical
set to ' '1". The
which Ls lowes
top of the sta
log: Leal units is

^ 11 e ••_ is. i> Liie tjomf let.

units corresponding
parameters, and r

ailing program. If
I/O units is done

number of that logi
t among those done
ck. If none of

ne, the V BIT is dor

and a return

e stack is set
ion status of
to 1 bits set

eturns without
any of the

, the V BIT is
cal I/O unit
is returned on
the indicated
cleared.

The EMT number for this routine is 17.

EQU DEFINE WAIT

OSWIT SYSTEM DIRECTIVES
214

OSWIT USER'S MANUAL 113

MOV =3,-(SP) WAIT FOR UNITS 0 OR 1
MOV ^O'lOOOOO1,-(SP)

SET WAIT BIT
EMT WAIT
MOV (SP)+,UNITNUM
ADD PCeSP BRANCH
MOV e(SP)+/PC TO CONTINUE
DC A-AOK"
DC A"EOF"
DC A'LONGLINE"

UNITNUM DS

MOV =3/-(SP) CHECK STATUS
CLR -(SP)
EMT WAIT OF 0 AND 1
BVC NONEDONE
MOV (SP)+,UNITNUM

SAVE UNIT
ADD PC,@SP
MOV @(SP)+,PC PROCEED
DC A'^OK"
DC AnEOF"
DC A"LONGLINE',

UNITNUM DS

Return codes:

: successful completion of I/O operation

end of file on read; end of disk on write;

: line too long (> 255) ;

8
: line terninated by control Z if in MTS mode of

TTY

OSWIT
215

SYSTEM DIRECTIVES

114 OSWIT USER'S MANUAL

WHENA and WHENB

EMT Routines

Purpose: To schedule
occurs.

a task when a device interrupt

Calling Paramters:

(SP)+2

(SP)

logical unit number of device

task ID

Remarks: These two routines are used to have a task
scheduled when the A or B interrupt of a
interface card occurs. The unit to have a WHEN
condition enabled on must be opened to the
appropriate device before the call to WHEN is
issued. Also all WHEN's on a device should be
cancelled before the device is closed(except when
exitting, the WHENs will be cancelled at the same
time the device is closed).

The EMT numbers of these routines are 36 and 37
respectively.

Example(s): MOV =ASSNTN,-
(SP) ASSIGN THE TRAIN TO UNIT 5

EMT OPEN

BVS NOTRAIN
MOV = 5,-

PUSH UNIT NUMBER
MOV ID,-(SP)
EMT WHENA

(SP)

CELL TASK

ASSNTN STRCON 'S^TRAIN*'

ERROR IF NO TRAI

PUSH TASK ID
ASSIGN PHOTO-

Error(s) An error will occur if an illegal device is
assigned to the unit specified, if an illegal
unit number is specified, or if an illegal ID is
given.

OSWIT SYSTEM DIRECTIVES
216

OSWIT USER'S MANUAL 115

WRITE

EMT Routine

Purpose: To write a logical record to a device.

Calling parameters:

SP+2
: logical unit number

SP
: the buffer address

Return parameters:

None

Remarks: The logical unit specified'must be between 0 and
30.

Although the routine returns immediately, the
transmission is not necessarily complete.

The first byte of the buffer must specify the
buffer length.

***** NOTE: if the logical unit is assigned to
the terminal, "EMT WRITE" will supply a "CARRIAGE
RETURN" and a "LINE FEED" after performing a
write operation. There is no need to wait for
completion of the "WRITE" operation after issuing
an "EMT WRITE" and before issuing the next "EMT
WRITE", to the same device, as the operating
system will provide buffering facilities in this
case.

Example(s)

The EMT number for this routine is 11.

MOV =13,-(SP) WRITE
MOV =TEXT,-(SP) ... TEXT ON
EMT WRITE ... UNIT 13
BCS BADUNIT IF ERROR

MOV =X,2000,,-(SP) WAIT FOR UNIT 13
MOV -X'SOOO',-(SP) WAIT UNTIL DONE
EMT WAIT
TST {SP)+ POP UNIT NUMBER
ADD PC,@SP VECTOR TO
MOV @{SP)+,PC PROPER HANDLER
DC A^OK"
DC A^KFULL"

OSWIT SYSTEM DIRECTIVES
217

116 OSWIT USER'S MANUAL

TEXT DC H"14",€'SAMPLE STRING.1

Error (s) If an illegal unit number occurs the C BIT is set
to "1".

OSWIT SYSTEM DIRECTIVES
218

OSWIT USER'S MANUAL 117

WRITES

EMT Routine

Purpose: To write a single byte to a iogicaj. unit.

Calling parameters:

SP+2
: logical unit number

SP
: the address of the byte

Return parameters:

None

Remarks: The logical unit specified must be between 0 and
30.

Although the routine returns immediately, the
transmission may not be complete.

***** NOTE: "EMT WRITEB" merely prints out the
specified character, all codes are valid and
therefore, no carriage return or line feed are
supplied automatically, the user is responsible
for all such editing procedures. There is no need
to wait for completion of an "EMT WRITEB" in
order to issue the next "EMT WRITEB" to the same
device, the operating system provides buffering
facilities in this case.

Example(s):

The EMT number for this routine is 13.

MOV =30,-(SP) WRITE CHARACTER
MOV =BYTE,-(SP) ... FROM BUFFER BYTE
EMT WRITEB ... TO UNIT 30 (SERCOM)
BCS BADUNIT IF ERROR
• •
CLR -(SP) WAIT FOR UNIT 30
MOV =X,C000',-(SP) WAIT UNTIL DONE
EMT WAIT
TST (SP)+ POP UNIT NUMBER
ADD PC,@SP VECTOR TO
MOV @(SP)+,PC PROPER HANDLER
DC A"AOK"
DC A"DKFULL"

BYTE DS 1C

OSWIT SYSTEM DIRECTIVES
219

118 OSWIT USER'S MANUAL

Error(s): If an illegal unit number occurs the C BIT is set
to "l".

OSWIT SYSTEM DIRECTIVES
220

OSWIT USER'S MANUAL 119

WRITEW

EMT Routine

Purpose: To write a word to a logical unit.

Calling parameters:

SP+2
: logical unit number

SP
: address of the word

Return parameters:

None

Remarks: The logical unit must be between 0 and 30.

A wait must be issued to insure that the
operation is complete.

The EMT number for this routine is 25.

Example(s)
MOV =12,-(SP) WRITE WORD
MOV =BUF,-(SP) TO UNIT 12
EMT WRITEW ... FROM BUF
BCS BADUNIT IF ERRORS
• •
MOV =X,1000',-(SP) WAIT FOR UNIT 12
MOV =X,8000',-(SP) WAIT UNTIL DONE
EMT WAIT
TST (SP)+ POP UNIT NUMBER
ADD PC,@SP VECTOR TO
MOV @{SP)+,PC PROPER HANDLER
DC A-AOK"
DC A'^KFULL"

BUF DS IF

Error(s): If an illegal unit number occurs the C BIT is set
to "1".

OSWIT SYSTEM DIRECTIVES
221

120 OSWIT USER'S MANUAL

UNLOCK

EMT Routine

Purpose: To set a locked task back to normal.

Calling Paramters:

None

Remarks: This routine will reset the priority of the
active task back to the priority specified in the
original task definition. A locked task will be
restored to normal. If the active task was not
locked then this routine has no effect.

The EMT numberfor this routine is 45.

Example(s):
EMT UNLOCK RESET THE TASK P

Error(s) : None

OSWIT SYSTEM DIRECTIVES
222

OSWIT USER'S MANUAL 121

Appendix C: SYSTEM SUBROUTINES AND FUNCTIONS

ATAN

Function Description

Purpose: To calculate the arc-tangent,

Location:, CRASHLIB

Calling Sequence:

CRASH: Y = ATAN (X);

Parameter: X - Real.

Value returned: Y - Real, value in radians.

Routines used: #POLY, #FCMP

Author: John J. Puttress

Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
223

122 OSWIT USER'S MANUAL

COS

Function Description

Purpose: To calculate the cosine.

Location: CRASHL1B

Calling Sequence:

CRASH: Y = COS (X);

Parameter: X - Real, value in radians

Value returned: Y - Real

Routines used: #POLY

Author: John J. Puttress

Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
224

OSWIT USER'S MANUAL 123

D2FLOAT

Subroutine Description

Purpose: To convert a string of ASCII characters into
a floating point value.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL D2FL0AT,(BUFFER,LENGTH,FLOATING,
INDEX,RCODE)

Parameters: BUFFER - First byte of data to be converted.

LENGTH - A fullword location containing the
length of the buffer to convert.

FLOATING - A double word location to place
the floating result.

INDEX - A fullword location to return the
address of the next byte in the buffer
to scan. Points to break character or
byte after last buffer location.

RCODE - A fullword location to return the
error code.

Return codes: 0 - ok
2 - exponent overflow underflow
4 - conversion error

Descritpion: This subroutine scans the input string for
three cases:

XXXXX
x.xxxx

and X.XXXXEXX

including sign for both mantisa and
exponent. It then converts it into a
floating point number. the index returned
points to either the character that stopped
the conversion (non-numeric) or the byte
after the last buffer location (end of
field).

Routines used: #SCALE,#SCALE2

Author: John J. Puttress

SYSTEM SUBROUTINES AND FUNCTIONS
225

124 OSWIT USER'S MANUAL

Last update April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
226

OSWIT USER'S MANUAL 125

DOPEFIX

Subroutine Description

Purpose: An intrinsic CRASH subroutine to setup an
automatic dope

Location: CRASHLIB vector depending on passed
parameters.

Calling Sequence:

Assembly: CALL DOPEFIX,(ADOPE)

Parameter: ADOPE - Array's dope vector.

Descritpion: This routine takes the dope vector shell and
fills in missing information. the element
size, number of dimensions, lower bounds and
upper bounds (passed in size) are filled in
at call. The (virtual base - base address),
size and scale factor are filled in on
return. Also on return, in register 0, the
number of bytes required to create the
array.

Routines used: NONE

Author: John J. Puttress

Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
227

126 OSWIT USER'S MANUAL

EXP

Function Description

Purpose: To calculate the exponential.

Location: CRASHLIB

Calling Sequence:

CRASH: Y = EXP (X);

Parameter: X - Real, where -88.02 < X < 88.02

Value returned: Y - Real

Routines used: #FCMP, #IFIX, #FLOAT

Author: John J. Puttress

Last update: April 21, 1976

1. ON ERROR, V-BIT IS SET, CLEARED OTHERWISE.

SYSTEM SUBROUTINES AND FUNCTIONS
228

OSWIT USER'S MANUAL 127

FLOAT2D

Subroutine Description

Purpose: To convert a floating point number into a
character string.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL FL0AT2D,(FLOATING,BUFFER)

Parameters: BUFFER - First byte of a buffer to place
resultant character string, this buffer
must be at least 11 bytes long.

FLOATING - A double • word containing the
floating point number to be converted.

Descritpion: This routine converts the floating point
number into one of two 11 byte formats:

'.XXXXXEXX*
or ' .XXXXEXX'

If the number is positive, the sign is
suppressed (the exponent always has a sign).
if there is an overflow underflow, the
buffer is filled with '*'.

Routines used: #SCALE,#SCALE2

Author: John J. Puttress

Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
229

128 OSWIT USER'S MANUAL

Purpose

LOG

Function Description

To calculate the logarithm.

Location:

Calling Sequence:

CRASH:

Parameter:

Value returned:

Routines used:

Author:

Last update:

CRASHLIB

Y = LOG (X) ;

X - Real, where x 0

Y - Real

#FCMP, #FLOAT, #POLY

John J. Puttress

April 21, 1976

1. on error, V-bit is set, cleared otherwise,

SYSTEM SUBROUTINES AND
230

FUNCTIONS

OSWIT USER'S MANUAL 129

Purpose:

Location:

Calling Sequence;

CRASH;

Parameter:

Value returned:

Routines used:

Author:

Last update:

SIN

Function Description

To calculate the sine.

CRASHLIB

Y = SIN (X) ;

X - Real, value in radians

Y - Real

#POLY

John J. Puttress

April 21, 1976

SYSTEM SUBROUTINES
231

AND FUNCTIONS

130 OSWIT USER'S MANUAL

SQRT

Function Description

Purpose: To calculate the square root.

Location: CRASHLIB

Calling Sequence:

CRASH: Y = SQRT (X);

Parameter: X - Real, where X > 0

Value returned: Y - Real (Note: if x is negitive, the SQRT
of the absolute value is taken and its
negitive value is returned).

Routines used: NONE

Author: John J. Puttress

Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
232

OSWIT USER'S MANUAL 131

#BMTXMUL

Subroutine Description

Purpose: An intrinsic CRASH routine to multiply two
boolean arrays.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL fBMTXMUL,(ADOPE,BDOPE,CDOPE)

Parameters: ADOPE - Boolean array dope vector.

BDOPE - Boolean array dope vector.

CDOPE - Boolean array dope vector (product).

Operation: C = A * B;

Routines used: NONE

Author: John J. Puttress

Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
233

132 OSWIT USER'S MANUAL

#FCMP

Routine Description

Purpose To compare two floating point number and set
appropriate condition codes.

Location:

On call:

Operation:

Condition codes;

Routines used

Author:

Last update:

CRASHLIB

RO A(Source)
Rl A(Destination)

(Source) - (Destination)

N: set if Result < 0, cleared otherwise
Z: set if Result = 0, cleared otherwise
V: cleared
C: cleared

NONE

John J. Puttress

April 21, 1976

SYSTEM SUBROUTINES AND
234

FUNCTIONS

OSWIT USER'S MANUAL 133

♦FLOAT

Subroutine Description

Purpose: To convert an integer into a floating point
number.

Location: CRASHLIB

On call: SP PC
SP+2 Integer value

On return: SP Floating Hi
SP+2 Floating Lo
Registers 0 and 1 modified.

Routines used: NONE

Author: John J. Puttress

Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
235

134 OSWIT USER'S MANUAL

»FMTX2I

Subroutine Description

Purpose; An intrinsic CRASH subroutine to convert a
real array into an integer array.

Location:

Calling Sequence:

Assembly:

Parameters:

Operation:

Routines used:

Author:

Last update:

CRASHLIB

CALL #FMTX2I,(ADOPE,BDOPE)

ADOPE - Real array's dope vector (source
array).

BDOPE - Integer array's dope vector
(destination array).

B ■ A;

#IFIX

Rick Richardson

September 1, 1978

SYSTEM SUBROUTINES AND
236

FUNCTIONS

OSWIT USER'S MANUAL 135

#FMTXADD

Subroutine Description

Purpose: An intrinsic CRASH routine to add two real
arrays.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #FMTXADD,(ADOPE,BDOPE,CDOPE)

Parameters: ADOPE - Real array dope vector.

BDOPE - Real array dope vector.

CDOPE - Real array dope vector (sum).

Operation: c =A + B;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
237

3^36 OSWIT USER'S MANUAL

#FMTXMUL

Subroutine Description

Purpose: An intrinsic CRASH routine to multiply two
real arrays.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #FMTXMUL,(ADOPE,BDOPE,CDOPE)

Parameters: ADOPE - Real array dope vector.
BDOPE - Real array dope vector.

CDOPE - Real array dope vector (product).

Operation: C = A * B;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
238

OSWIT USER'S MANUAL 137

#FMTXSUB

Subroutine Description

Purpose: An intrinsic CRASH routine to subtract two
real arrays.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #FMTXSUB,(ADOPE,BDOPE,CDOPE)

Parameters: ADOPE - Real array dope vector.

BDOPE - Real array dope vector.

CDOPE - Real array dope vector (difference).

Operation: C = A - B;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
239

138 OSWIT USER'S MANUAL

IFSCLDIV

Subroutine Description

Purpose: An intrinsic CRASH routine to divide a real
array by a sealer.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #FSCLDIV,(ASCALER,BDOPE,CDOPE)

Parameters: ASCALER - Real sealer.

BDOPE - Real array dope vector.

CDOPE - Real array dope vector (quotient).

Operation: C = B A;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
240

OSWIT USER'S MANUAL 139

#FSCLMUL

Subroutine Description

Purpose: An intrinsic CRASH routine to multiply a
real array by a sealer.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #FSCLMULf(ASCALER,BDOPE,CDOPE)

Parameters: ASCALER - Real sealer.

BDOPE - Real array dope vector.

CDOPE - Real array dope vector (product).

Operation: C = B * A;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
241

140 OSWIT USER'S MANUAL

#IFIX

Routine Description

Purpose: To convert a floating point number into an
integer

Location: CRASHLIB (the fraction is truncated).

On call: SP PC
SP+2 Floating Hi
SP+4 Floating Lo

On return: SP Integer value
Registers 0 and 1 modified.

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
242

OSWIT USER'S MANUAL 141

»IMTX2F

Subroutine Description

Purpose: An intrinsic CRASH subroutine to convert an
integer array into a real array.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #IMTX2F,(ADGPE,BDOPE)

Parameters: ADOPE - Integer array's dope vector (source
array).

BDOPE - Real array's dope vector
(destination array).

Operation: B = A;

Routines used: #FLOAT

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
243

142 OSWIT USER'S MANUAL

IIMTXADD

Subroutine Description

Purpose: An intrinsic CRASH routine to add two
integer arrays.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #IMTXADD,(ADOPE,BDOPE,CDOPE)

Parameters: ADOPE - Integer array dope vector.

BDOPE - Integer array dope vector.

CDOPE - Integer array dope vector (sum).

Operation: C = A + B;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
244

OSWIT USER'S MANUAL 143

#IMTXAND

Subroutine Description

Purpose: An intrinsic CRASH routine to and two
integer arrays.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #IMTXAND,(ADOPE,BDOPE,CDOPE)

Parameters: ADOPE - Integer array dope vector.

BDOPE - Integer array dope vector.

CDOPE - Integer array dope vector (result) .

Operation: C = A AND B;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
245

144 OSWIT USER'S MANUAL

flMTXMUL

Subroutine Description

Purpose: An intrinsic CRASH routine to multiply two
integer arrays.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #IMTXMULf(ADOPE,BDOPE,CDOPE)

Parameters: ADOPE - Integer array dope vector.

BDOPE - Integer array dope vector.

CDOPE - Integer array dope vector (product).

Operation: C = A * B;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
246

OSWIT USER'S MANUAL 145

#IMTXOR

Subroutine Description

Purpose: An intrinsic CRASH routine to or two integer
arrays.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL IIMTXOR,(ADOPE,BDOPE,CDOPE)

Parameters: ADOPE - Integer array dope vector.

BDOPE - Integer array dope vector.

CDOPE - Integer array-dope vector.

Operation: C = A OR B;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
247

246 OSWIT USER'S MANUAL

#IMTXSUB

Subroutine Description

Purpose: An intrinsic CRASH routine to subtract two
integer arrays.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #IMTXSUB,(ADOPE,BDOPE,CDOPE)

Parameters: ADOPE - Integer array dope vector.

BDOPE - Integer array dope vector.

CDOPE - Integer array dope vector
(difference).

Operation: C = A - B;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
248

OSWIT USER'S MANUAL 147

tIMTXXQR

Subroutine Description

Purpose: An intrinsic CRASH routine to exclusive or
two integer arrays.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #IMTXXOR,(ADOPE,BDOPE,CDOPE)

Parameters: ADOPE - Integer array dope vector.

BDOPE - Integer array dope vector.

CDOPE - Integer array dope vector.

Operation: C = A XOR B;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS

249

148 OSWIT USER'S MANUAL

fISCLDIV

Subroutine Description

Purpose: An intrinsic CRASH routine to divide an
integer array by a sealer.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #ISCLDIV,(ASCALE,BDOPE,CDOPE)

Parameters: ASCALE - Integer sealer.

BDOPE - Integer array dope vector.

CDOPE - Integer array dope vector
(quotient).

Operation: C = B A;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
250

OSWIT USER'S MANUAL 149

#ISCLMUL

Subroutine Description

Purpose: An intrinsic CRASH routine to multiply an
integer array by a sealer.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #ISCLMUL,(ASCALE,BDOPE,CDOPE)

Parameters: ASCALE - Integer sealer.

BDOPE - Integer array dope vector.

CDOPE - Integer array dope vector (product) .

Operation: C = B * A;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
251

150 OSWIT USER'S MANUAL

fIROUND

Routine Description

Purpose: To convert a floating point number into an
integer (the fraction is rounded up if
.5) .

Location: CRASHLIB

On call: SP PC
SP+2 Floating Hi
SP+4 Floating Lo

On return: SP Integer value
Registers 0 and 1 modified.

Routines used: NONE

Author: John J. Puttress

Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
252

OSWIT USER'S MANUAL 151

#MTXMOV

Subroutine Description

Purpose: An intrinsic CRASH routine to move the
contents of one array to another.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #MTXMOV,(ADOPE,BDOPE)

Parameters: ADOPE - Array dope vector (source).

BDOPE - Array dope vector (destination).

Operation: B = A;

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
253

15 2 OSWIT USER'S MANUAL

#POLY

Routine Description

Purpose: To evaluate a polynomial (floating point).

Location: CRASHLIB

On call: RO A(X)
Rl A(X Increment)
R2 A(Coefficients)
R3 # of terms to calculate.

On return: SP Result Hi
SP+2 Result Lo
Registers 3 and 5 modified.

Routines used: NONE

Author: John J. Puttress

Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
254

OSWIT USER'S MANUAL 153

Purpose:

#POWER

Routine Description

Internal routine used by fPOWERII, #POWERRI
and fPOWERRR to calculate:

Base ** Exponent

where Base and Exponent are both real.

Location:

On call:

On return:

Descritpion:

Routines used

Author:

Last update:

CRASHLIB

SP PC
SP+2 Base Hi
SP+4 Base Lo
SP+6 Exponent Hi
SP+8 Exponent Lo

SP Result Hi
SP+2 Result Lo
Registers 0, 1, 2 and 5 modified.

This routine assumes that all parameters are
good. the result is calculated using the
following equation:

EXP (Y * LOG (X))

LOG, EXP

John J. Puttress

April 21, 1976

1. oh error, the V-bit is set, cleared otherwise,

SYSTEM SUBROUTINES
255

AND FUNCTIONS

154 OSWIT USER'S MANUAL

fPOWERII

Routine Description

Purpose: To perform the intrinsic CRASH function:

INTEGER ** INTEGER

Location: CRASHLIB

On call: SP PC
SP+2 Exponent
SP+4 Base

On return: SP result

Routines used: #POWER, #IFIX, #FLOAT

Author: John J. Puttress

Last update: April 21, 1976

1. on error, Result=0 and V-bit is set, V-bit cleared otherwise.

SYSTEM SUBROUTINES AND FUNCTIONS
256

OSWIT USER'S MANUAL 155

#POWERRI

Routine Description

Purpose: TQ perform the intrinsic CRASH function:

REAL ** INTEGER

Location: CRASHLIB

On call: SP PC
SP+2 Exponent
SP+4 Base Hi
SP+6 Base Lo

On return: SP Result Hi
SP+2 Result Lo

Routines used: #POWER, #FLOAT

Author: John J. Puttress

Last update: April 21, 1976

1. on error, Result=0 and V-bit is set, V-bit cleared otherwise.

SYSTEM SUBROUTINES AND FUNCTIONS
257

iSe OSWIT USER'S MANUAL

♦POWERRR

Routine Description

Purpose: To perform the intrinsic CRASH function:

REAL ** REAL

Location: CRASHLIB

On call: SP PC
SP+2 Exponent Hi
SP+4 Exponent Lo
SP+6 Base Hi
SP+8 Base Lo

On return: SP Result Hi
SP+2 Result Lo

Routines used: #POWER

Author: John J. Puttress

Last update: April 21, 1976

1. on error, Result=0 and V-bit is set, V-bit cleared otherwise

SYSTEM SUBROUTINES AND FUNCTIONS
258

OSWIT USER'S MANUAL 157

Entry:

Purpose:

#SCALE

Routine Description

#SCALE2

An internal routine used by D2FL0AT and
FL0AT2D to scale a floating point number by
a power of 10.

Location:

On call:

On return:

Descritpion;

Routines used

Author:

Last update:

CRASHLIB

SP R5
SP+2 Hi Float
SP+4 Lo Float
[R3 | R4 Power of 10 for #SCALE I #SCALE2]

SP Scaled Float Hi •
SP+2 Scaled Float Lo
Registers 3, 4 and 5 modified.
All other registers unchanged.

This routine performs the scaling in two
steps:

#SCALE - scales by 10**1, 10**2, ...,
10**7

#SCALE2 - scales by 10**-40, 10**-32,
..., 10**32, 10**40

These operations must be none in two steps
since scaling on input and output presents
different exponent overflow underflow
problems.

NONE

John J. Puttress

April 21, 1976

1. if the V-bit is set on return, a scaling error has occured,
the stack has been cleared. V-bit cleared otherwise.

SYSTEM SUBROUTINES AND FUNCTIONS
259

15Q OSWIT USER'S MANUAL

#SUBSCR

Function Description

Entry: fSUBSCRl

Purpose: To calculate the array element address for a
given array and subscripts.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #SUBSCR,(ADOPE,BSUBSCR)

CALL #SUBSCR1,(ADOPE,BSUBSCR,CERROUT,DEF

Parameters: ADOPE - Array's dope vector.

BSUBSCR - Subscript list.

CERROUT - Error handler.

DEFAULT - Default value in case of error.

Value returned: Address of array element.

Descritpion: This routine calculates the address of an
array element. If the entry point #SUBSCR1
is used, subscript checking is done. if
there is an error, the error handler is
called and the default value is returned.
Entry point fSUBSCR ignores all errors.

Routines used: NONE

Author: John J. Puttress

Last update: April 21, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
260

OSWIT USER'S MANUAL 159

»CATNATE

Function Description

Purpose: To concatenate several strings into one
larger string. Automatic conversion of Real
and Integer numbers is performed.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #CATNATE,(TYPE1,ADDR1,...,TYPEN,ADDRN)

Parameters: TYPE - 0 If Character
1 If Integer
-1 If Real.

ADDR - Address of string or number.

Value returned: Rl points to new string. Must issue a
$RELBUF to return string to OSWIT.

Descritpion: The list of variables is scanned. If
conversion is indicated, the number is
converted into ASCII characters. The string
is built up in a 258 byte buffer from OSWIT.
Hence, it must be released when it is no
longer needed. An EMT $ERROR occurs if
concatenation results in a string longer
than 255 characters.

Routines used: $BIN2D, FL0AT2D, $ERROR, $GETBUF, $RELBUF

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
261

160 OSWIT USER'S MANUAL

Purpose

#SUBSTR

Routine Description

An intrinsic CRASH routine to get a
substring of a character string.

Location: CRASHLIB

On call: SP PC
SP+2 Address of string
SP+4 Number of characters
SP+6 Number of the starting character in

string

On return: SP Address of an OSWIT buffer containing
the substring

Routines used: $GETBUF

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
262

OSWIT USER'S MANUAL 161

#BITSEL

Routine Description

Purpose: An intrinsic CRASH routine to get bit
strings from an integer or bit variable.

On call : SP PC
SP+2 Address of bits to be selected
SP+4 Number of bits to take
SP+6 Number of the starting bit (As DEC

numbers them)

On return: SP The selected bits, right justified in
the word.

Routines used: NONE

Author: Rick Richardson

Last update: September 1, 1978

SYSTEM SUBROUTINES AND FUNCTIONS
263

162 OSWIT USER'S MANUAL

»IR

Subroutine Description

Purpose: To INPUT a real variable from SCARDS.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #IR,(REAL.VARIABLE)

Parameters: REAL.VARIABLE - Where you wish to have the
converted value placed.

Descritpion: This subroutine will scan the input stream
SCARDS and convert from that source one real
variable.

Routines used: #READ,D2FL0AT,#DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
264

OSWIT USER'S MANUAL 163

»IRD

Subroutine Description

Purpose: To INPUT a real analog variable from SCARDS
applying OFFSET and SCALE factor.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #IRD,(REAL.VARIABLE,DOPE.VECTOR)

Parameters: REAL.VARIABLE - Where you wish to"have the
converted value placed.

DOPE.VECTOR - Dope vector of the analog
variable.

Descritpion: This subroutine will scan the input stream
SCARDS and convert from that source one real
variable then it will apply the OFFSET and
SCALE called for in the dope vector.

Routines used: #READ,D2FL0AT,#DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
265

164 OSWIT USER'S MANUAL

#11

Subroutine Description

Purpose: To INPUT an integer variable from SCARDS.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #11,(INTEGER.VARIABLE)

Parameters: INTEGER.VARIABLE - Where you wish to have
the converted value placed.

Descritpion: This subroutine will scan the input stream
SCARDS and convert from that source one
integer variable.

Routines used: #READ,#DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
266

OSWIT USER'S MANUAL 165

IIID

Subroutine Description

Purpose: To INPUT an integer analog variable from
SCARDS applying OFFSET and SCALE factor.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #IID,(INTEGER.VARIABLE,DOPE.VECTOR)

Parameters: INTEGER.VARIABLE - Where you wish to have
the converted value placed.

DOPE.VECTOR - Dope vector of the analog
variable.

Descritpion: This subroutine will scan the input stream
SCARDS and convert from that source one
integer variable then it will apply the
OFFSET and SCALE called for in the dope
vector.

Routines used: #READ,#FL0AT,#IFIX,#DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
267

166 OSWIT USER'S MANUAL

♦ IS

Subroutine Description

Purpose: To INPUT a string variable from SCARDS.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #IS,(STRING.VARIABLE)

Parameters: STRING.VARIABLE - Where you wish to have the
string placed.

Descritpion: This subroutine will scan the input stream
SCARDS and get from that source one string
variable.

Routines used: #READ##DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
268

OSWIT USER'S MANUAL 167

♦ READ

Subroutine Description

Purpose: To read a string from SCARDS placing that
string in the crash INPUT/OUTPUT buffer.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #READ

Descritpion: This subroutine will scan the input stream
SCARDS and get from that source one line for
the other INPUT routines.

Routines used: #DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
269

168 OSWIT USER'S MANUAL

#OR

Subroutine Description

Purpose: To OUTPUT a real variable to SPRINT.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #0R,(REAL.VARIABLE)

Parameters: REAL.VARIABLE - The real variable you wish
to have OUTPUT.

Descritpion: This subroutine will convert one real
variable and place that result on the output
stream SPRINT.

Routines used: #WRITE,D2FL0AT,#DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
270

OSWIT USER'S MANUAL 169

#ORD

Subroutine Description

Purpose: To OUTPUT a real analog variable to SPRINT
applying OFFSET and SCALE factor.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #ORD,(REAL.VARIABLE,DOPE.VECTOR)

Parameters: REAL.VARIABLE - The real variable you wish
to have OUTPUT.

DOPE.VECTOR - Dope vector of the analog
variable.

Descritpion: This subroutine will convert one real
variable applying OFFSET and SCALE factors
and will place that result on the output
stream SPRINT.

Routines used: #WRITE/D2FL0AT,#DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
271

170 OSWIT USER'S MANUAL

♦01

Subroutine Description

Purpose: To OUTPUT an integer variable to SPRINT.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #01,(INTEGER.VARIABLE)

Parameters: INTEGER.VARIABLE - The integer variable you
wish to have OUTPUT.

Descritpion: This subroutine will convert one integer
variable and place that result on the output
stream SPRINT.

Routines used: #WRITE,#DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
272

OSWIT USER'S MANUAL 171

»OID

Subroutine Description

Purpose: To OUTPUT an integer analog variable to
SPRINT applying OFFSET and SCALE factor.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #OID,(INTEGER.VARIABLE,DOPE.VECTOR)

Parameters: INTEGER.VARIABLE - The integer variable you
wish to have OUTPUT.

DOPE.VECTOR - Dope vector of the analog
variable.

Descritpion: This subroutine will convert one integer
variable applying OFFSET and SCALE factors
and will place that result on the output
stream SPRINT.

Routines used: #WRITE,»FL0AT,#IFIX,#DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
273

172 OSWIT USER'S MANUAL

♦OS

Subroutine Description

Purpose: To OUTPUT a string variable to SPRINT.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #0S,(STRING.VARIABLE)

Parameters: STRING.VARIABLE - The string you wish to
OUTPUT.

Descritpion: This subroutine will take a string from the
user and place that string on the output
stream SPRINT.

Routines used: #WRITE,#DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
274

OSWIT USER'S MANUAL 173

#WRITE

Subroutine Description

Purpose: To write a string from the CRASH
INPUT/OUTPUT buffer to SPRINT.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #WRITE

Descritpion: This subroutine will take the converted
string in the CRASH INPUT/OUTPUT buffer and
will place that string on the output stream
SPRINT.

Routines used: #DUMMY1

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
275

174 OSWIT USER'S MANUAL

#DUMMY1

Routine Description

Purpose: INPUT/OUTPUT temporary storage CSECT.

Location: CRASHLIB

Entry: #BUFFER - The INPUT/OUTPUT string storage
area (256 bytes) .

#LENGTH - The length of the input string.

#RNTCDE1 - The return code from the WAIT
EMT.

#BRKCHR - The address of the character that
caused conversion to stop.

#TMSP - The most significant past of a
temporary floating point number.

#TLSP - The least significant part of a
temporary floating point number.

Descritpion: This CSECT contains all the necessary
storage for INPUT/OUTPUT processing of
string data.

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
276

OSWIT USER'S MANUAL 175

#GRD

Subroutine Description

Purpose: To GET a real analog variable from a given
LDN applying OFFSET and SCALE factor.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #GRD,(REAL.VARIABLE,DOPE.VECTOR)

Parameters: REAL.VARIABLE - Where you wish to have the
converted value placed.

DOPE.VECTOR - Dope vector of the analog
variable.

Descritpion: This subroutine will GET from the LDN
specified in the dope vector one analog
variable then it will apply the OFFSET and
SCALE called for in the dope vector.

Routines used: #READG/#FL0AT/#DUMMY2

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
277

176 OSWIT USER'S MANUAL

#GID

Subroutine Description

Purpose To GET an integer analog variable from a
given LDN applying OFFSET and SCALE factor.

Location:

Calling Sequence;

Assembly;

Parameters:

Descritpion:

Routines used

Author:

Last update:

CRASHLIB

CALL #GID,(INTEGER.VARIABLE,DOPE.VECTOR)

INTEGER.VARIABLE - Where you wish to have
the converted value placed.

DOPE.VECTOR - Dope vector of the analog
variable.

This subroutine will GET from the LDN
specified in the dope vector one analog
variable then it will apply the OFFSET and
SCALE called for in the dope vector.

#READG,#FL0AT,#IFIXf#DUMMY2

Ted J. Kowalski

June 23, 1976

SYSTEM SUBROUTINES AND
278

FUNCTIONS

OSWIT USER'S MANUAL 177

#READG

Subroutine Description

Purpose To read a byte from a given LDN placing that
byte in the crash GET/PUT buffer.

Location:

Calling Sequence;

Assembly;

Descritpion:

Routines used:

Author:

Last update:

CRASHLIB

CALL #READG

This subroutine will GET from the LDN
specified in the dope vector one byte for
the other GET routines.

#DUMMY2

Ted J. Kowalski

June 23, 1976

SYSTEM SUBROUTINES
279

AND FUNCTIONS

178 OSWIT USER'S MANUAL

#PRD

Subroutine Description

Purpose: To PUT a real analog variable to a given LDN
applying OFFSET and SCALE factor.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #PRD,(REAL.VARIABLE,DOPE.VECTOR)

Parameters: REAL.VARIABLE - The real variable you wish
to have PUT.

DOPE.VECTOR - Dope vector of the analog
variable.

Descritpion: This subroutine will apply OFFSET and SCALE
factors to the analog variable and will
place that result on a given LDN specified
by the dope vector.

Routines used: #WRITEP,#IFIX,#DUMMY2

Author: Ted J. Kowaiski

Last update; June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
280

OSWIT USER'S MANUAL 179

#PID

Subroutine Description

Purpose: To PUT an integer analog variable to a given
LDN applying OFFSET and SCALE factor.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #PID,(INTEGER.VARIABLE,DOPE.VECTOR)

Parameters: INTEGER.VARIABLE - The integer variable you
wish to have PUT.

DOPE.VECTOR - Dope vector of the analog
variable.

Descritpion: This subroutine will apply OFFSET and SCALE
factors to the analog variable and will
place that result on a given LDN specified
by the dope vector.

Routines used: #WRITEP,#FL0AT,#IFIX,#DUMMY2

Author: Ted J. Kowalski

Last update: June 23, 1976

SYSTEM SUBROUTINES AND FUNCTIONS
281

180 OSWIT USER'S MANUAL

»WRITEP

Subroutine Description

Purpose: To write a string from the CRASH GET/PUT
buffer to a given LDN.

Location: CRASHLIB

Calling Sequence:

Assembly: CALL #WRITEP

Descritpion: This subroutine will take the scaled byte in
the CRASH GET/PUT buffer and will place that
byte on the on a given LDN specified by the
dope vector.

Routines used: #DUMMY2

Author: Ted J. Kowaiski

Last update: June 23, 1976

282
SYSTEM SUBROUTINES AND FUNCTIONS

OSWIT USER'S MANUAL 181

»DUMMY2

Routine Description

Purpose: GET/PUT temporary storage CSECT.

Location: CRASHLIB

Entry: #TBYTE - byte used for temporary A/D D/A
storage.

#RTNCDE2 - Return code from the -WAIT EMT for
GET/PUT operations.

Descritpion: This CSECT contains ail the necessary
storage for GET/PUT processing of analog
data.

Author: Ted J. Kowalski

Last update: June 23, 1976

283

SYSTEM SUBROUTINES AND FUNCTIONS

182
OSWIT USER'S MANUAL

#GCNV

Subroutine Description

Purpose: To APPLY SCALE AND OFFSET WHEN INPUTTING OR
GET'TING a variable. uiiim, UR

Location: CRASHLIB

Calling Sequence:

Assembly: JSR PC,#GCNV

Descritpion: THIS SUBROUTINE WILL TAKE THE SCALE AND
OFFSET FROM the dope vector whose address is
assumed in RO. It will apply them to the
REAL VARIABLE on the stack!,

Author: Brian S. Cashman

Last update: July 18,1976

284

SYSTEM SUBROUTINES AND FUNCTIONS

OSWIT USER'S MANUAL 183

#PCNV

Subroutine Description

Purpose: TO APPLY SCALE AND OFFSET WHEN OUTPUTTING OR
PUT'TING a variable.

Location: CRASHLIB

Calling Sequence:

Assembly: JSR PC,#PCNV

Descritpion: THIS SUBROUTINE WILL TAKE THE SCALE AND
OFFSET FROM THE DOPE VECTOR WHOSE ADDRESS IS
ASSUMED IN RO. IT WILL APPLY them to the
REAL VARIABLE on the stack.

Author: Brian S. Cashman

Last update: July 18,1976

285

SYSTEM SUBROUTINES AND FUNCTIONS

184 OSWIT USER'S MANUAL

Appendix D: ODT - ONLINE DEBUGGING TOOL

ODT is a ROM resident microcode debugging package that is
located on the LSI-11 CPU board. ODT commands are executed by
the LSI-11 processor only when the system is in the HALT mode.
When in this mode the processor prompts with an "(§" and responds
to commands and information entered via the console. Ail
processor responses are controlled by the processor microcode.

All commands and characters are echoed by the processor.
Iliegaj. commands are echoed and followed by "?". This result
also occurs when no location is open or openning non-existent
.locations. The console always prints six numeric characters as
addresses or data. The user is no t required to enter leading
zeros. All input and output addresses and data are in octal.

The following is a list of ODT commands and a brief
description of how they are used. For a more detailed
explanation and exampj.es see DEC's microcomputer processor
manual.

RETURN Close opened vocation and accept
next command.

LINE FEED Ciose current xocation; open next
sequential location.

] Open previous vocation.

_ Take contents of opened vocation,
index by opened location plus 2, and
open that location.

@ Take contents of opened location as
an absolute address and open that
vocation.

r/ Open location r.

/ Open last location.

$n or Rn Open general register n(0-7) or s
(PS register).

r;G or I-G Go to xocation r, initialize the
bus, and start program.

nL Execute bootstrap loader using n as
device CSR address.

;P or P Proceed with program execution.

RUEOUT OR DELETE Erase previous character. Response
is a backslash \ (134) each time

ODT - ONLINE DEBUGGING TOOL
286

OSWIT USER'S MANUAL 185

RUBOUT is entered.

M Maintance. Display of an internal
CPU register follows the M command.
Only the last digit is significant,
indicating how the cpu entered the
HALT (ODT) mode, as follows:

0 or 4 HALT insfuction or BHALT L
bus signal asserted.

1 or 5 Bus error occured whij.e
getting device interrupt
vector.

2 or 6 Bus error occuered whij.e
doing memory refresh.

Double ■ bus
(stack was
vaj.ue) .

error occured
non-existent

Reserved instruction trap
occurred (non-existent Micro-
PC address occurred on
internal CPU bus) .

A combination of 1, 2, and 4
occurred.

CRLT-SHFT-S For manufacturing tests only. Escape
this command function by typing MULL
and 000 and 100).

ODT

287

ONLINE DEBUGGING TOOL

186 OSWIT USER'S MANUAL

Appendix E: ASSEMBLY DEBUG MODE

This is the LSI 11 high-core DEBUG program. It is a core
resident program intended for use in initial checkout of
software for the LSI mini-computer by direct interaction from
the operator's console. Once the software is "up", this program
will be used onj.y when all else fails, i.e., if the software
fails on a frequent basis. This program runs with interrupts
disabled so it cannot be used for debugging while the system is
"up".

7 .5 General Concepts

The LSI 11 DEBUG routine herein described is a high-core
resident utility which processes traps to the low-core vectors
at 4, 10, 14, and 20 (hexadecimal). Traps to 4 and 10 are
recognized as program interrupts. A trap to 14 may be recognized
as the execution of an instruction at a breakpoint causing the
breakpoint to be restored. Otherwise, the trap to 14 is ignored.
The trap to 20 is recognized as a breakpoint, either preset or
set by DEBUG. After any of these traps but 14 (which is
transitory), the registers (0-7) and the PS are saved and a
message printed indicating how the trap was recognized. Commands
may then be entered to display or alter core, set breakpoints,
clear all breakpoints, display or alter the saved registers, or
restart execution of the program. When the program is restarted,
ail registers and the PS are restored from the saved registers.

Commands to the DEBUG routine are recognized by their first
and xast letters. For example, the CONTINUE command could be
given as CONTINUE, CTE, CXXBQE, or CE. Parameters to the
commands must be separated from each other and the command
itself by one or more blanks. All parameters are numbers. Any
number may be expressed as the sum of two or more numbers. All
commands are executed as they are typed in. Thus, although a
xine may be deleted, that part of the line up to the first bxank
wilj. have already been executed. For example, if one typed in
'ALTER 6 0 77 20' where is a rubout (the delete line charact-
er), locations 5 and 10 would be altered. Location 12 would not
be. The rubout is mainly useful for suppressing the "Eh?"
message when you know you have typed in an illegal command.

I-Lxegal commands to the system or missing parameters
generate the only error message: "Eh?". There are no illegal
parameters per se. Some parameters, however, even though
syntactically correct may cause program interrupts within the
DEBUG routine. Such things as byte addresses for ALTER or
undefined addresses for ALTER, BREAKPOINT, or DISPLAY wilx cause
interrupts. These interrupts will not modify the saved registers
though.

The DEBUG routine may be entered directly by starting it
from ODT or mce commonly by using the OSWIT DEBUG command. Once
entered, the folxowing commands can be used:

ASSEMBLY DEBUG MODE
288

OSWIT USER'S MANUAL 107

ALTER {location} {value} [{vaxue}]

ALTER modifies core.

AT {routine}{location} [{location}]

AT sets AT point(s)

BREAK {vocation} [{location}]

BREAK sets breakpoint(s).

BINFO

BINFO displays breakpoint(s).

CONTINUE

CONTINUE restarts execution after a
breakpoint.

CLEAR

CLEAR restores all breakpoints.

CSECT {location}

CSECT sets relative offset.

DISPLAY {location} [{words}]

DISPLAY displays core.

DISPLAYS {location} [{bytes}]

DISPLAYS displays core bytes.

DISPLAY {location} [{words}]

DISPLAY displays core.

GOTO {location}

ASSEMBLY DEBUG MODE
289

183 OSWIT USER'S MANUAL

GOTO restarts execution at a given location.

GR [{register}]

GR displays register(s).

MODGR {register} {value} [{value}]

MODGR modifies register(s).

OSWIT

OSWIT warmstarts the operating system.

STEP [{steps}]

STEP steps through the program.

These commands are described in detail in the section that
follows.

290

ASSEMBLY DEBUG MODE

OSWIT USER'S MANUAL 139

7.6 DEBUG command descriptions

ALTER

Command Description

Purpose: To alter the contents of core.

Prototype: ALTER {location} {value} [{value}]

Parameters:

.ocation is the address of a word of PDP11
memory or of a device register.

value is the value that word is to be
modified to.

Usage: This command will modify the specified
location(s) to the specified value(s). If an odd
byte address is specified or an illegal address,
a program interrupt will occur within the DEBUG
routine.

Example(s): ALTER 0 0 0
AR 202+4000 12366
AR +500 240

291

ASSEMBLY DEBUG MODE

190 OSWIT USER'S MANUAL

AT

Command Description

Purpose: To set AT point(s).

Prototype: AT {routine} {location} {{location}]

Parameters:

routine is the address of the routine branched
to when the AT point is reached. This
routine should terminate with an RTT to
return to the interrupted program. The
interrupted programs PC & PSW wiii be
on the stack as if an interrupt had
vectored directly to the routine.
Although, the PSW will have the T bit
set by the DEBUG routines. This enables
the IOT to be replaced after the
interrupted instruction is executed. To
enter DEBUG from the routine, an IOT
should be executed. No breakpoints or
AT points should be set in a AT
routine.

location is the address of a word of PDP11
memory at which <
inserted. It shoulc
of an instruction.

memory at which a breakpoint is to be
inserted. It should be the first word

Usage: This command wij.1 modify the location (s)
specified to X'tJOCH' (the IOT instruction) and
save the previous vaj.ue(s) and the location{s) on
the "breakpoint stack". When the IOT instruction
is executed, the "breakpoint routine" is trapped
to. If the location is found in the "breakpoint
stack" and there is a AT routine address for that
xocation, a legitimate AT point is recognized.
The CLEAR instruction will restore the location
but not affect the saved PC.

Example(s): AT 302 +250
AT 1020+76+16 1344

292
ASSEMBLY DEBUG MODE

OSWIT USER'S MANUAL 191

BREAK

Command Description

Purpose: To set breakpoint(s).

Prototype: BREAK {location} [{location}]

Parametersi

location is the address of a word of PDP11
memory at which i
inserted. It shoiui
of an instruction.

memory at which a breakpoint is to be
inserted. It should be the first word

Usage: This command will modify the location(s)
specified to X'OOOV (the IOT instruction) and
save the previous vajLue(s) and the iocation(s) on
the "breakpoint stack". When the IOT instruction
is executed, the "breakpoint routine" is trapped
to. If the location is found in the "breakpoint
stack", a legitimate breakpoint is recognized.
Otherwise, the IOT is assumed to signal a
"preset" breakpoint. The CLEAR instruction will
restore the location but not affect the saved PC.

Example(s): BREAK 302 +250
BK 1020+76+16

293

ASSEMBLY DEBUG MODE

192 OSWIT USER'S MANUAL

BINFO

Command Description

Purpose: To display the locations and old values replaced
by breakpoints.

Prototype: BINFO

Usage: The breakpoint locations are displayed, one per
line. If a CSECT has been issued, both the
absolute and relative addresses are displayed. An
at-sign will follow if this is the current
breakpoint. The instruction which occupied this
location will be displayed next. Finally, if this
is a AT point, the AT routine location will be
displayed.

Example(s): BINFO
EREAKPOINTINFO
BO

294

ASSEMBLY DEBUG MODE

OSWIT USER'S MANUAL 193

CONTINUE

Command Description

Purpose: To continue execution of a program after a
breakpoint or just to continue it.

Prototype: CONTINUE

Usage: This command will restart execution of the
program. If at a breakpoint which has not been
restored, the location is modified back to the
original instruction, executed, and re-modified
back to an IOT, with execution continuing after
this. The trace facility is utilized to do this.
Please note that the trace bit wi±l be on in the
"PS wHile the instruction at the breakpoint is
being executed. If the program is not at a
legitimate breakpoint, this command wi.i.1 cause
execution to resume at the vocation specified by
the saved PC.

Example(s): CONTINUE
CE

295

ASSEMBLY DEBUG MODE

194 OSWIT USER'S MANUAL

CLEAR

Command Description

Purpose: To restore all breakpoints currently set.

Prototype: CLEAR

Usage: This instruction wiii restore all breakpoints in
the program. It may be given at any time, even at
a breakpoint, which then ceases to be a
breakpoint.

Example(s): CLEAR
CR

296

ASSEMBLY DEBUG MODE

OSWIT USER'S MANUAL 195

CSECT

Command Description

Purpose: To set a displacement to be added to any octal
number starting with a "+".

Prototype: CSECT [{location}]

Usage: This controls the address assumed to be the start
of the CSECT being debugged. Relative addresses
start w a "+". When {location} isn't specified,
absolute addressing is assumed.

Example(s): CSECT (resets to zero)
CSECT 10000

297

ASSEMBLY DEBUG MODE

196 OSWIT USER'S MANUAL

DISPLAY

Command Description

Purpose: To display the contents of core.

Prototype: DISPLAY {location} [{words}]

Parameters:

location is the address of a byte of PDP11
memory or of a device register.

words is the number of successive words to be
displayed. If left out, it defaults to
1.

Usage: The specified number of locations are displayed,
eight per line. If a byte address is given, it is
aligned to a word boundary. If an illegal address
is specified, a program interrupt will occur
within the DEBUG routine.

Example(s): DISPLAY 200 14
DY +100+20 4
DY 177560

298

ASSEMBLY DEBUG MODE

OSWIT USER'S MANUAL 197

Purpose:

Prototype:

Parameters:

DISPLAYS

Conunand Description

To display the contents of core in byte form,

DISPLAYS {location} [{bytes}]

location is the address of a byte of PDP11
memory or of a device register.

bytes is the number of successive bytes to be
displayed. If left out, it defaults to
1.

Usage: The specified number of locations are displayed,
sixteen per line. If an illegal address is
specified, a program interrupt will occur within
the DEBUG routine.

Example(s) DISPLAYS 201 14

DS +102 4
DB 177560

299
ASSEMBLY DEBUG MODE

198 OSWIT USER'S MANUAL

GOTO

Command Description

Purpose: To restart execution of the program at a
specified location.

Prototype: GOTO {location}

Parameters:

location is the address of a word of PDP11
memory. It should be the first word of
an instruction.

Usage: This command will restart execution of the
program at the specified location. If an illegal
address is specified, a program interrupt will
occur at that address .

Example(s): GOTO 200
GO +246

300

ASSEMBLY DEBUG MODE

OSWIT USER'S MANUAL 199

GR

Command Description

Purpose: To display the contents of the saved registers or
a specified register.

Prototype: GR [{register}]

Parameters:

register is the number of a saved- register which
is to be displayed. It should be
between 0 and 10, inclusive.

Usage: If a register number is specified, its contents
will be displayed. If no parameter is given, all
registers will be displayed. The register number
10 refers to the PS.

Example(s): GR 10
GENR

301

ASSEMBLY DEBUG MODE

200 OSWIT USER'S MANUAL

MODGR

Command Description

Purpose: To modify the contents of a saved register.

Prototype: MODGR {register} {value} [{value}]

Parameters:

register is the number of the first register
which is to be modified. It should be
between 0 and 10, inclusive.

value is the value that register is to be
modified to.

Usage: The specified register{s) are modified to the
given value(s). The register number 10 refers to
the PS.

Example(s): MODGR 0 2
MR 7 200 160

302
ASSEMBLY DEBUG MODE

OSWIT USER'S MANUAL 201

OSWIT

Command Description

Purpose: To perform a WARMSTART of the operating system.

Prototype: OSWIT

Usage: This instruction will restart OSWIT at the
WARMSTRT address. The program, if loaded, is not
destroyed.

Example(s): OSWIT
OT

303
ASSEMBLY DEBUG MODE

202 OSWIT USER'S MANUAL

STEP

Command Description

Purpose: To step through execution of a program.

Prototype: STEP [{steps}]

Parameter:

steps is the number of instructions to
execute. If left out it defaults to 1.

Usaqe: This command will execute the specified number of
instructions in the program. If no number is
given, the next instruction in the program is
executed. When the stepping is completed, debug
is re-entered. If a breakpoint is encountered
while stepping, it is recognized.

Example(s): STEP 6
SP
SP 377

304

ASSEMBLY DEBUG MODE

OSWIT USER'S MANUAL 203

INDEX

A/D And D/A Interface 8
A/D Inputs 9
Analog Display And Select Switch 9
ASSEMBLY DEBUG MODE 186
Asynchronous Scheduling 42
Command Overview 13
Conversions 27
D/A Outputs 9
DEBUG Command Descriptions 189
Digital Display And Select Switch 9
Disk Controller 8
Disk WRITE ENABLE/PROTECT Switch 7
EMT Descriptions 7 0
Fatal Error Recovery 9
File Naming Conventions 44
File Protection 46
File System Overview ' 44
General Concepts 186
HALT Switch 7
Hardware Bootstrap Switch 8
introduction 1
I/O And Interrupt Structure 4
Loading 9
Loading OSWIT And Fatal Error Recovery
 9

Locking And Unlocking Tasks 43
Logical Units 27
LSI-11 Backplane 8
MAIN/AUXILLARY Disk Switch 8
Main Disk Drive 8
MTS Communications 11
MTS - OSWIT Communications 3
ODT - Online Debugging Tool 184
OSWIT: An Overview 1
OSWIT Command Language 2,13
OSWIT Command Language Descriptions
 15

OSWIT ERROR MESSAGES , 68
OSWIT FILE SYSTEM 44
OSWIT File System And Utility Programs
 2

OSWIT I/O AND INTERRUPT STRUCTURE 27
OSWIT Public Files 44
OSWIT Support Functions 3
OSWIT SYSTEM DIRECTIVES 69
OSWIT System Memory Configuration 10
OSWIT Utility Program Descriptions
 48

OSWIT UTILITY PROGRAMS 47
Priority 41
Pseudodevice Descriptions 30

305 INDEX

204 OSWIT USER'S MANUAL

Pseudodevices ^ #/# ^ ^ 28
Psuedodevice Overview I28
Read And Write Operations ...,!!! '.21
Real Time Operations !!!!!!!!!!! !.3
Synchronous Scheduling !!!!!!!!!! ^42
System Directive Overview ..,,! !!!69
System Hardware !!! .6
System I/O Directives !!!!!!!!!!!!! 27
SYSTEM OPERATING INSTRUCTIONS ...!.!!!!!!!,6
SYSTEM SUBROUTINES AND FUNCTIONS !.!!!!!!!!!!!!! 121
Task Definition !!!!!!!! .40
Task Identifiers !!!!!!!!!!!! ^41
Tasking \ 4
TASKING AND TIMING i !.*!!!!!!!!!!!!!!!!!!!!!!40
Tasking And Timing Introduction ,,!!!40
Task Scheduling ,,,,. [41
Task Termination !.!!!!!!!!!!!!!! 42
Utility Programs Overview 47

306

APPENDIX B

CCCCCCCCCC
CCCCCCCCCCCC
CC CC
CC
CC
CC
CC
CC
CC
CC CC
CCCCCCCCCCCC
CCCCCCCCCC

RRRRRRRRRRR
RRRRRRRRRRRR
RR RR
RR RR
RR RR
RRRRRRRRRRRR
RRRRRRRRRRR
RR RR
RR
RR
RR
RR

RR
RR
RR
RR

AAAAAAAAAA
AAAAAAAAAAAA
AA AA
AA AA
AA AA
AAAAAAAAAAAA
AAAAAAAAAAAA
AA AA
AA AA
AA AA
AA AA
AA AA

ssssssssss HH HH
ssssssssssss HH HH
ss ss HH HH
ss HH HH
sss HH HH
sssssssss HHHHHHHHIIHHH
sssssssss HHHHHHHHHHHH

sss HH HH
ss HH HH

ss ss HH HH
ssssssssssss HH HH
ssssssssss HH HH

Compiler for a Real time Applications SHop

USERS

MANUAL

August, 1977

Richard A. Volz
Ralph E. Richardson

Revised: August, 1979

307

CRASH User's Manual

TABLE OF CONTENTS*

CHAPTER 1 - CRASH: An Overview 1
Introduction
1.1 Real Time Operations !!!!!!!!!!!! 2
1.2 Language Structure !!!!!!!!!] 4
1.3 Data Types ,,,,,!!! 5
1.4 Arithmetic Processing ,..,! 7
1.5 Control Structures ,...,.,'! 7
1.6 Procedures And Tasks g
1.7 Input/Output Considerations '.'.'.'. 8
1.8 CRASH Programming Conventions 9

CHAPTER 2 - Data Types And Structures 11
Introduction
2.1 Constants

A. Integer Constants n
B. Real Constants ,,!!!!! 11
C. Bit Constants !!!!! 12
D. String Constants !!!!!!! 12

2.2 Identifiers 12
2.3 Variable Types And Storage !!!!!!!! 13

A. INTEGER Variables '.'.'.'.'.'.. 13
B. REAL Variables '...'.'.'.'.'.'.'.'. 14
C. CHARACTER Variables !!.*!!!!.*!]!!.' 14
D. BIT Variables 14
E. ANALOG And DISCRETE Variables ...!!!.!!!! 14

2.4 Variable Organization , 15
A. Scalars 15
B. Arrays 15
C. Delay Variables !!!!!!! 15

2.5 Storage Allocation '.'.'.'. 15
A. Automatic Storage Allocation 16
B. Static Storage Allocation 17
C. Global Storage Allocation 17

2.6 Declaration Statements 17
A- Types '.'.'.'.'. 18
B. Attributes 19

B.l. ANALOG, DISCRETE, LDN, DELAY, SCALE, OFFSET
And CLAMP 19
B.2. GLOBAL And STATIC Attributes !!!! 20
B.3. INTERNAL And EXTERNAL Attributes 21
B.4. Array (Dimension List) Attribute 21
B.5. INITIAL Attribute 22
B.6. MAP Attribute 23

2.7 Reserved Words 25

CHAPTER 3 - Procedures 27
Introduction 27
3.1 Procedure Types 27

308 Table of Contents

CRASH User's Manual

A. EXTERNAL 27
B. INTERNAL 27
C. TASK 27
D. MAIN 28

3.2 Subroutines And Functions 28
A. Subroutines 28
B. Functions 29

3.3 Procedure Definitions 29
A. Procedure Definition Statement 30
B. Declaration And Executable Statements 30
C. END Statement 31

3.4 Sample Program 32

CHAPTER 4 - Expressions And Assignments 33
Introduction 33
4.1 Arithmetic Operators And Expressions 33

A. Syntax Of An Arithmetic Expression 33
B. Operator Precedence 34
C. Type Conversions 34

4.2 Logical Expressions ■ 35
A. Relational Operators 35
B. Boolean Operators 36

4.3 Concatenation And String Expressions 36
4.4 Sub-unit Selection 37
4.5 Assignment Of Values 38

A. The Assignment Statement 38
B. Type Conversions 38
C. Multiple Assignments 39

4.6 Complete Operator Precedence 40

CHAPTER 5 - Control Constructs 41
Introduction 41
5.1 DO Construct 41

A. Levels, Nesting And Scope 41
B. Types Of DO Statements 41

B.l The Simple DO 42
B.2 The Iterated DO 42
B.3 The Stepped DO 43
B.4 The DO WHILE 43
B.5 THE DO UNTIL 44
B.6 The DO CASE 44

C. Identifiers And DOs 44
D. EXIT And NEXT DO 45

5.2 IF...THEN and IF...THEN... ELSE 47
A. IF...THEN 47
B. IF...THEN...ELSE 47
C. Nesting IF Statements 48

5.3 GOTO And GO TO 49
A. Transfer Of Control 49
B. Restrictions On Use 50

CHAPTER 6 - Tasking And Timing 53
Introduction 53
6.1 Timing 53

ii Table of Contents ^09

CRASH User's Manual

6.2 Declaring A Task 54
6.3 Defining A Task 55
6.4 Task Identifiers ,.,,,! 55
6.5 Priority 55
6.6 Scheduling A Task 56

A. AT ,... 57
B. IN !!!!!!!!!!!!'* 57
C. EVERY !! I ! ! 57
D. ON ,..,.!!!!!! 57
E . START !!!!!!!!!!!!!!! 57

6.7 Cancelling A Task 58
6.8 Conditions 59

A. IO_RETURN ,.!!!!!! 59
B. INTERRUPT ..,..!!! 59

CHAPTER 7 - Input And Output 61
Introduction 61
7.1 INPUT .'!!!!!!!!!!! ei
7.2 CARD ..,!.!!!!!!! 62
7.3 OUTPUT ,.,!! 63
7.4 GET !!!!!!!!! 63

A. Analog Real 64
B. Analog Integer 64
C. Discrete 64

7.5 PUT 65
A. Analog Real 65
B. Analog Integer 65
C. Discrete 66

7.6 GET RECORD ! 66
7.7 PUT RECORD .,.....!!! 67
7.8 Waiting For I/O Completion 68

CHAPTER 8 - Arrays And Delay Variables 69
Introduction 69
8.1 Subscripted Variables 69
8.2 Using Lists 70
8.3 Tables, Matricies, And Multiple Subscripts 72
8.4 Matrix Operations 73
8.5 Delay Variables 73

A. Referencing A Delay Variable 73
B. Assignment To A Delay Variable 73
C. Using A Delay Variable For Data Acquisition And
Buffering 73

8.6 Subscript And Delay Checking 75
A. CHECK 75
B. IGNORE , ., 76
C. The ON-Condition 76
D. The REVERT Condition 77

CHAPTER 9 - CRASH On MTS 79
9.1 How To Run The CRASH Compiler 79

A. The Compilation Phase 79
B. The Assembly Phase 79
C. The Linking Phase 79

310 Table of Contents iii

CRASH User's Manual

D. The Combined Compiler And Assembler 80
9.2 Control Toggles 81
9.3 Including An MTS File In CRASH Source Code 83

CHAPTER 10 - Macros 85
Introduction 85
10.1 Macro Definitions 85
10.2 Macro Calls And Text Expansion 86

CHAPTER 11 - Predefined Functions And Subroutines 89
Introduction 89
11.1 Mathematical Functions 89

A. AT AN (x) 89
B. COS(x) 89
C. EXP(x) 89
D. LOG(x) 89
E. SIN(x) 90
F. SQRT(x) 90
G . URAND 90

11.2 Inline Functions 90
A. LENGTH (x) 90
B. MAXLEN(X) 91
C. ADDR(x) 91
D. NUMARGS 91
E. ABS(x) 91

11.3 Matrix Operations 92
A. IMTXADD And FMTXADD 92
B. IMTXMUL, BMTXMUL, And FMTXMUL 92
C. IMTXSUB And FMTXSUB 92
D. ISCLDIV And FSCLDIV 93
E. ISCLMUL And FSCLMUL 93
F. IMTXAND 93
G. IMTXOR 93
H. IMTXXOR 93
J. MTXMOV 93
K. ARRAYINFO 94

11.4 Matrix Conversions 94
A. FMTX2I 94
B. IMTX2F 94

11.5 Character To Numerical Conversion 95
A. D2BIN 95
B. D2FL0AT 95
C. 02BIN 96

11.6 Numerical To Character Conversion 97
A. BIN20 97

11.7 OSWIT Interface Routines 97
A. SYSTEM 97
B. OSWIT 97
C. PARFIELD 98
D. READ 98
E. WRITE 98
F. OPEN 99
G. CLOSE 99
H. SETPFX 100

iv Table of Contents 311

CRASH User's Manual

J. PEEK 100
K-. POKE 100

CHAPTER 12 - Warnings, Errors, And Severe Errors 103
Introduction 103
12.1 Warnings 103

A. Constant Warnings 103
B. Declaration Warnings 103
C. DO Warnings 103
D. END Warnings 104
E. Macro Warnings 104
F. Procedure Warnings 104
G. Miscellaneous Warnings ..104

12.2 Errors 104
A. Symbol Errors 104
B. Undeclared Variable Errors 104
C. Constant Errors 104
D. Procedure Errors 105
E. Variable Errors 105
F. Miscellaneous Errors 105
G. DO Errors 105
H. END Errors 105
I. Declaration Errors 105
J. Macro Errors 106

12.3 Severe Errors 106
A. Symbol Severe Errors 106
B. Constant Severe Errors 107
C. Variable Severe Errors 107
D. Compiler Severe Errors 107
E. Undefined Variable Severe Errors 107
F. Condition Severe Errors 107
G. Procedure Severe Errors 107
H. Task Severe Errors 107
I. DO Severe Errors 108
J. Declaration Severe Errors 108
K. Bit Selection Severe Errors 108

Chapter 13 - Known Compiler Bugs And Restrictions 109

Chapter 14 - RAID Symbolic Debugger Ill
Introduction Ill
14.1 General Information Ill
14.2 Statement Numbers Ill
14.3 RAID Mode 112

A. PROC 112
B. BREAK 112
C. RESTORE 113
D. CLEAN 113
E. LIST 114
F. RUN 114
G. CONTINUE 114
H. STEP 115
J. OSWIT 115
K. EXIT 116

312 Table of Contents

CRASH User's Manual

L. LOCK 116
M. UNLOCK 116
N. DISPLAY 116
P. MODIFY 118
Q. CALL 118

14.4 Miscellaneous Information 118

Appendix A: Run-time Strategy And Calling Conventions 121
A.Tasks And Procedures 121
B.Data Types 121
C.Calling Sequences 124
D.Parameter Passing 126
E.Register Usage 127
F.Subscriptrange, Stringrange And Delayoverflow 127
G. *11ASR Symbol Name Generation Algorithm 127
H. Storage Allocation 128
I. Submonitor And Operating System Procedures 133

Appendix B: The BNF Grammar For CRASH 135

Index 145

*
Page numbers in the Table of Contents refer to the numbers
in the lower corner of each page.

vi Table of Contents 313

-RASH User's Manual

CHAPTER 1 - CRASH: AN OVERVIEW

Introduction

The field of digital computers and their application is
perhaps the most dynamic field in engineering at the present
time. Driving this change during the past five years has been
the introduction and widespread acceptance of the microcomputer.
Already there are numerous products on the market using
microcomputers, and the future is almost limitless. At present,
however, software support for these systems lags far behind
their oider and larger counterparts. Most software development
for microcomputers is still done in assembly language. The
availability of compilers for microcomputers is rather limited.
Typical examples are the PL/M compiler and BASIC. These,
however, are not really suited to most of the real time
applications which are forthcoming for microcomputers.

With the broad range of applications to be developed for
microcomputers during the next decade, it is important that the
conveniences and documentation support of higher level languages
be afforded the developer of microcomputer applications. The
greater programmer efficiency of higher level languages, the
dropping cost of memory, and the high cost of maintaining
assembly language programs will almost certainly make it more
cost effective to do most of the development in higher level
1anguages.

CRASH (Compiler for a Real time Applications SHop) is a
compiler being developed at Michigan to meet the needs of a
higher level language for the Digital Equipment Corporation LSI-
11 microcomputer. The compiler was designed and written by a
CICE/CCS 675 class offered by Professor Richard Volz consisting
of: Jack Bonn, Brian Cashman, Ted Kowalski, Alex Kushner, Steve
Medlin, Bert Moberg,'john Puttress, Al Segal, Jim Sterken, Dave
Sun and Dave Yeager. The macro processor was written by a
CICE/CCS 575 group consisting of Rick Richardson and Dave Smith.
The compiler was revised, debugged, and maintained by Rick
Richardson during 1977 and 1978, and by Terry Rosenbaum during
summer, 1979.

The size of present microcomputers precludes the running of
any significant software development system on the micro itself.
Rather, the natural procedure is to use a cross compiler which
runs on another machine. CRASH is a cross compiler which runs on
the Michigan Terminal System (MTS) and produces LSI-11
assembly code. This is in turn run on the *11ASR assembler
available under MTS. The object code produced by the assembler
is link editted under MTS and either punched on paper tape (for
loading on the LSI-11) or sent via a phone line directly to the

Intel Corporation program product

CHAPTER 1 - CRASH: An Overview
314

CRASH User's Manual

LSI-11.

1.1 Real Time Operations

According to Martin, a real time computer system is one
which accepts inputs from one or more sources, acts upon these
inputs, and produces corresponding outputs fast enough to effect
the source. This definition encompasses a wide variety of
systems. Between 2 a.m. and 4 a.m. (and upon a few other rare
occasions) MTS may be considered a real time system. Other
examples would include the use of a computer as a data
concentrator, as the control element in a feedback loop, as a
data logger for some real time process, or as a supervisor for a
set of other real time computers.

There are two primary characteristics which distinguish
real time applications from the scientific computations with
which most programmers are familiar: the need to respond rapidly
to the occurrence of asynchronous events external to the
computer; and the need to handle I/O for a (potentially) large
number of external devices in a manner which doesn't lock up the
CPU during the I/O transfer. An example would be to require a
computer controlling electric power distribution to suspend
normal program operation upon the detection of a generator
failure and initiate an orderly shutdown procedure for that
generator and a redistribution of the load among the remaining
generators. The consequences of these characteristics are far
reaching.

First, in order to allow the user to specify the response
to asynchronous external events, he/she must be given some
control over interrupt handling. Secondly, since the computer is
usually much faster than the devices it controls or responds to,
it is common to have a single computer control several, or even
hundreds of, external devices. As a result, one usually has
several more or less independent pieces of code which are to run
at different times. This leads to the concept of a task which is
merely a named piece of code. In CRASH a task is a named
procedure (program) which has no arguments. CRASH provides a
mechanism for associating a task (i.e. a program) with an
interrupt for a given external device. When an interrupt occurs,
the program currently operating may be suspended and the
associated task executed. When this task is completed, its
execution is terminated and the original task resumed.

Associated with the notion of a task is that of a priority.
If there are two or more tasks wishing to execute the CPU (the
original and an interrupting task) there must be some mechanism
for arbitrating which is to execute. In CRASH this is handled by
having the user assign a priority to each task. Once started, a

Martin, James, Design of Real Time Computer Systems, Prentice-
Hall c '

2 CHAPTER 1 - CRASH: An Overview 315

CRASH User's Manual

task will run to completion unless interrupted by a task with a
higher priority. If task A has priority 10 and is interrupted by
task B which has a priority of 25, task B will execute to
completion unless interrupted by a task of priority greater than
25. When task B finishes, task A will be resumed.

Another use of tasks supported by CRASH is with synchronous
timing. The LSI-11 microcomputer hardware for which CRASH is
intended has a programmable real time clock. This allows the
user to set a time interval in the clock and have the CPU
receive an interrupt from the clock when that interval has past.
CRASH utilizes this facility to allow the user to specify that a
task is to be executed repeatedly (synchronously) at fixed
intervals of time. Of course, the user must take care that the
task can be completed before the next occurrence of that task.

Naturally, CRASH also provides a mechanism for cancelling a
task if it is no longer needed.

The second area of importance was I/O. It is common for a
real time computer to deal with a number of different devices.
Each device may involve a sensor and an analog to digital
converter, or a digital to analog converter and power amplifier.
In either case there is likely to be a calibration offset and
scale factor associated with the physical device which must be
applied to every value in order to put it in the proper
engineering units. Or it may be that each bit of the I/O word is
associated with a different physical device (e.g. a switch).

For example, suppose one had a potentiometer mechanically
connected to the output shaft of a rotational servo system.
Electrically, the potentiometer might be connected between
ground and 10 volts. An analog to digital converter connected to
the potentiometer arm could be used to give a digital value for
the position (angle) of the servo system. If the analog to
digital converter were eight bits, 255 would correspond to 359
degrees. Obviously a scale factor of 360/256 must be applied if
the converted number is to be viewed in degrees. Moreover, if
the desired range is -ISO to +180 degrees, an offset of -180
degrees may need to be applied.

Another common requisite in the case of periodically
sampled external signals is the use of past values of the signal
as well as the current (most recent) sample. For example,
suppose one is building a digital control system in which the
control signal (digitally computed) depends upon the integral of
the error (to force the long term behavior to have zero error)
and the derivative of the error (to anticipate the changes which
are going to occur and take the proper corrective action
sooner). If the task which computes the control signal is
executed periodically, past values of the error will clearly be
requirad(to form the derivative).

CRASH has mechanisms to support these various I/O

316 CHAPTER 1 - CRASH: An Overview 3

CRASH User's Manual

requirements. There are variable att
which allow a variable to be associ
I/O unit at declaration. Moreover, a
also be specified. After declaration
variable will automatically apply
defined and use the given device. Th
be specified every time an I/O opera
past history will automatically
variables. The history will automat
an input operation is done on that v
of referencing past as well as curre

ributes ANALOG and DISCRETE
ated with a specific logical
scale factor and offset may

, any I/O reference to the
the offset and scale factor

ese characteristics need not
tion is done. In addition, a
be kept for all analog
ically be updated every time
ariable. A convenient means
nt values is provided.

1.2 Language Structure

Crash is a block structured language similar in many ways
to PL/I or XPL. A program consists of a list of procedure
(subroutine) definitions, and is itself considered to be a
procedure. Procedure definitions may be nested up to four
levels, A procedure call is legal only to procedures defined
immediately within, on the same or an outer level which does not
enclose the procedure. For example, consider the situation shown
below:

PROC A

PROC B

PROC C
I
I PROC F
I I
I
I

PROC D

PROC E

317

CHAPTER 1 - CRASH: An Overview

CRASH User's Manual

Procedure C may call procedures D, F, E, or B (recursive calls
are allowed). Procedure B may call procedures C, D, or E, but
not F. Procedure E may call B, but not C or D. In addition, any
of the procedures in the above example may call a procedure
defined and compiled external to procedure A.

Each procedure consists of a list of variable declarations
followed by a list of statements. All variables used in a
program must be declared. The purpose in this restriction is to
try to enforce good program structure. Users are strongly
encouraged to use the comment facilities of the language to
insert descriptions of the use of all variables at the beginning
of each procedure in the declaration section.

Every variable declared in a procedure is known without
further declaration to all procedures defined within that
procedure. For example, in the procedure structure given above,
all variables declared in procedure A are known to procedures B,
C, and F, unless explicitly declared within the latter
procedures. Variables declared in procedure B are known to
procedure C but not to procedure A. These are the usual rules of
variable scope as per ALGOL, PL/I or XPL.

To allow common variables between externally compiled
programs, a variable may be declared GLOBAL in two or more
externally compiled procedures, in which case it will be known
to all procedures in which it is so declared. There must be one
procedure designated as the MAIN procedure in which all GLOBAL
variables are declared. However, in other external procedures
only those variables used need be declared.

1.3 Data Types

The basic data types of the language are REAL, INTEGER,
BIT, BOOLEAN, and CHARACTER. A variety of subtypes may be
obtained by including various attributes with the declaration of
the variable. The legal attributes are:

ANALOG
DISCRETE
LDN
SCALE
OFFSET
MAP
DELAY
WORD
BYTE
CLAMP
PACKED

Some of the attributes require an argument, as indicated below.

The purpose of these attributes is to add flexibility to

CHAPTER 1 - CRASH: An Overview
318

CRASH User's Manual

the language. Indeed, many of the unique features of the
language are achieved through use of these attributes. However,
not all attributes may be used with all data types. A precise
description of the rules of use are given in chapter 2. The
purpose here is merely to give a rough idea of the intended use.

The ANALOG attribute may be used with either INTEGER or
REAL variables. The DELAY attribute is used with it to specify a
delay depth for the variable, i.e. the number of past values of
the variable to be kept, as noted above. Clearly, DELAY is one
of the attributes which must have an argument.

LDN, BYTE, WORD, SCALE, OFFSET, and CLAMP are used to
associate a variable with a particular device. LDN specifies the
logical device number. Every I/O reference to the variable will
be through the given LDN. If desired it is possible to reset
this under program control. The WORD and BYTE attributes specify
the type of I/O which is to be used with the device. WORD
specifies 16 bits, while BYTE refers to 8 bits of data. The
SCALE and OFFSET are to provide compensation for any scale
factor or offset effects of the particular sensors or analog to
digital converters used. They will be automatically applied
every time an I/O operation is done with the variable. This will
alleviate the need of the user remembering to do this in a
consistent manner throughout the program. CLAMP is used to
restrict the output values to a device to a specified range. If
a value is to be output which is outside this range, the highest
(or lowest) clamp value is used.

The MAP attribute is normally used with DISCRETE variables,
which must, in fact, be integers. This facility allows the user
to assign a name to contiguous bits which make up the variable.
The user may then refer to collections of bits of a variable by
name in his program. This is particularly useful when dealing
with digital I/O where each bit, or each small group of bits in
a word may have independent meanings. For example, bits 0-7 may
be a physical device number, bit 15 a state, and the other bits
unused. The MAP facility would let the user name these
individual components of the word.

The REAL, INTEGER, BIT and CHARACTER variables without any
further attributes are roughly the same as in most languages.
All REAL variables are 32 bits long. All character variables may
be of length 0 to 255, but that length must be fixed at
declaration time. BIT variables may have a maximum length of 16.
All INTEGERS are of length 16 bits.

319
CHAPTER 1 - CRASH: An Overview

CRASH User's Manual

1.4 Arithmetic Processing

The usual arithmetic operations and order of precedence
(e.g. as in FORTRAN) hold among INTEGER and REAL variables.
Mixed mode expressions are allowed with conversions performed as
required. The usual logical operations AND (&) , OR (|) and NOT
(~) may be used with BOOLEAN variables. The relational operators
=, >, <, >=, <= may be used and carry the usual meanings.

In addition to the normal operations, certain of the
arithmetic and logic operators are extended to array operations.
Addition (+), subtraction (-), AND (&), and OR (|) operations
between arrays of matching dimensions are allowed. In performing
these operations ANALOG variables are treated as one dimensional
arrays of size specified by the depth of delay defined.
Multiplication between a scalar and an array, and division of an
array by a scalar on the right are defined.

Finally, multiplication between one and two dimensional
arrays of appropriately matching dimensions is defined. Consider
A*B. If A is a one dimensional array and B a matrix, then the
result is treated as a row vector. If A and B are both vectors,
then the inner product is formed. Finally, if A and B are both
matrices of matching dimensions, the matrix product is formed.
At present, array operations are handled by explicit subroutine
calls (much faster than user written code). Eventually, they
will become part of the language.

1.5 Control Structures

The language provides a variety of control structures to
facilitate structured programming. It has the normal DO with
iteration count of FORTRAN. This has been extended to the form
DO 1=11,12,...In, where the loop is executed for exactly those
values of I contained in the list. In addition DO WHILE exp and
DO UNTIL exp constructs have been added, where exp is a logical
expression which controls when the loop processing ends.

A DO CASE exp is provided. Exp is an integer valued
expression. A series of statements follows the DO CASE. Exp is
used to select exactly one of these for execution. Since each of
these statements may in fact be a nested group of statements,
great flexibility is provided.

Two forms of the IF statement are provided: IF exp THEN si;
and IF exp THEN s2 ELSE s3. Exp is a logical expression taking
the values true or false, si, s2 and s3 are statements whose
execution is controlled by the value of exp.

320

CHAPTER 1 - CRASH: An Overview

CRASH User's Manual

1.6 Procedures And Tasks

The language supports two types of transfer of control to
other sections of code. The first is via a procedure call
(subroutine call) and is accomplished in the same manner as in
FORTRAN. The procedures may be subroutines or functions and the
use within a statement dictates which is expected. As discussed
above the procedures may be either internally defined or
externally defined.

The second mechanism for transfer of control is in response
to an external event or internal processing condition (e.g.
array reference out of subscript range). Most often this uses a
TASK. A TASK is nothing more than an externally defined
procedure which takes no arguments. To be established the name
of the TASK (procedure) is used in one of several SCHEDULE
statements. The SCHEDULE statements state the conditions (e.g.
interrupt on device number 3, or every .25 seconds) under which
the background program is to be interrupted and the TASK named
started.

Since the potential exists for several conditions to be
satisfied at nearly the same time, resulting in more than one
task trying to execute at the same time, each SCHEDULE statement
includes a specification of a PRIORITY of that task. The
operating system which runs with the compiled code will ensure
that the highest priority task will be the one that executes. It
will execute to completion unless interrupted by a higher
priority TASK (i.e., there is no time slicing).

1.7 Input/Output Considerations

There are two basic types of I/O supported by the language.
The first assumes that the variables used in the statement have
had an LDN defined for them(a default of the console device is
assumed). This type takes the form GET <variable list> or PUT
<variable list>. All variables in the list are processed to the
LDN given in their declaration (unless reset) and the OFFSET and
SCALE applied. This is the form one would normally use in
communicating with external devices other than the control
console.

The second I/O structure is intended to be used primarily
with the console device. The forms are <variable> = INPUT; and
OUTPUT = <expression>. On INPUT, the values are assumed to be in
character form separated by either comma or blank delimiters
(stream I/O in PL/I terminology). On OUTPUT all variables are
converted to character form and automatic spacing applied. This
relieves the user of worrying about complicated format
structures. The default device for INPUT/OUTPUT is the console
device.

321
CHAPTER 1 - CRASH: An Overview

CRASH User's Manual

1.8 CRASH Programming Conventions

With some programming languages, like FORTRAN, the
programmer has a fairly rigid format he must follow when writing
his program. In CRASH, the source code is considered as a
continuous stream of characters. Card boundaries are completely
ignored. It is therefore possible to have several statements on
one line, or none at all. Blanks may appear anywhere in the
source, and in any number. For example, the following three
statements are identical to CRASH:

ALPHA(I) = BETA(J);

ALPHA(I)=BETA(J) ;

ALPHA (I) =BETA(J)

Clearly, the first example is the easier to read. However all
three are legal and produce the same results.

The problems with this type of parsing are that, left to
themselves, different programmmers will come up with different
formats for their programs. Some conventions have been set down
for using structured languages like CRASH, and the programmer
should try to stick to these, or at least be consistent so that
his programs can be read by someone else.

Comments can be freely used wherever needed, and should be
used generously. They should be not only a guide to the reader,
but a guide to the programmer as well. They should describe the
process being performed, and not simply restate what a
particular statement does. A comment is started by a /*. All
text after the /* is ignored by the compiler except for control
toggles (chapter 9). The comment is ended by the first */•
Comments can be as long as desired and will be printed on the
listing of the program.

322

CHAPTER 1 - CRASH: An Overview

CRASH User's Manual

CHAPTER 2 - DATA TYPES AND STRUCTURES

Introduction

This chapter covers constants, identifiers, variable types,
storage allocation, declaration statements, and reserved words.

2.1 Constants

General Description

Constants are quantities whose values are known and
invariant. CRASH supports four types of constants.

Precise Description

A. Integer Constants

An integer constant is a stream of decimal■digits (0-9) preceded
by an optional sign (+ or -). Internally, integer constants are
stored in 16-bit two's complement form. The range of allowable
values is -32768 to +32767. Blanks, commas, and decimal points
are not allowed within integer constants.

Examples:

212
-32768
+ 10

B. Real Constants

A real constant is a stream of decimal digits (0-9) and a
decimal point (.) followed by another stream of decimal digits.
The constant may optionally be preceded by a sign (+ or -). A
power of ten exponent may be specified by immediately following
the constant with "E", an optional sign (+ or -), and a one or
two digit exponent. Internally, real constants are stored in
LSI-11 floating point form. The range of values expressible is
approximately 10** (-38) to 10** (38). Blanks are not allowed
within real constants.

Examples

.0073
-93.
+ 6.8
1.E35
5.7E-6

323
CHAPTER 2 - Data Types and Structures 11

CRASH User's Manual

C. Bit Constants

Bit constants provide alternative notations for 16-bit
constants. They consist of the letter B, 0 or H followed by a
stream of digits enclosed in quotes ("). Blanks may be used
freely between the quotes for clarity. If the first character is
a B then the digits are assumed to be binary (0,1), else if the
first character is an 0 they are assumed to be octal
(0,1,...,7), and if the first character is an H they are assumed
to be hexadecimal digits (0-9,A-F). If no letter appears, an 0
is assumed by default.

If more than 16 bits are specified, the rightmost 16 bits are
used; if less are specified, they are stored right justified in
a 16-bit field with the unspecified bits zeroed out.

Examples:

"17 077"
B'^OOl 1110 0011 1111"
H"1E3F"
0" 17 077"

D. String Constants

A string constant is a stream of characters enclosed in primes
('). Strings of length 0-255 are allowed, a length of zero
denotes the null string. Two primes in a row ('') within a
string may be used to denote the occurrence of the single
character prime. Since the omission of the closing prime is a
common programmer error, the string is automatically terminated
at a single semicolon to aid error recovery. Therefore,
semicolons must be doubled if they are to appear in a string
constant.

Examples:

'ABC
■ i

'01+173'
'AIN' ' T NO MORE'

2.2 Identifiers

General Description

Identifiers are used in CRASH to represent variables,
labels, procedures, tasks, and macros.

12 CHAPTER 2 - Data Types and Structures
324

CRASH User's Manual

Precise Description

Identifiers occur in CRASH as names of variables, procedures,
tasks and macros. For a complete description of the use of
macros, see Chapter 10. An identifier is a stream of from 1 to
255 alphabetic (A,...,Z,_,$) or numeric (0,...,9) characters the
first of which must be A-Z or $. When an identifier is used to
name an external procedure, task, or GLOBAL variable, it is
restricted to a maximum length of 8 characters.

Examples:

CENTS2$
START__UP
A
WH0_NEEDS__AN_IDENTI FI ER__THI S__L0NG

2.3 Variable Types And Storage

General Description

A variable is a quantity which can take on different values
throughout the execution of a program. An identifier is used as
the name of a variable, which ultimately refers to a location in
memory where the value of that variable is stored.

All variables must be declared before their use via
declaration statements (see section 2.4). The amount of storage
allocated as well as the internal format used is determined by
the "type" of the variable and its "attributes". This
information is included as part of the variable's declaration.

attributes, and their
declarations, however, is

This section discusses
combinations. The actual
not discussed until section

types,
syntax for
2.6.

Precise Description

A. INTEGER Variables

Integer variables refer to 16 bits (2 bytes) of storage. They
are stored in two's-complement format internally. The range of
values that can be represented is therefore -32768 to 32767.
Overflow of an integer variable is not detected at run-time, it
is the programmers responsibility to determine the range of
values needed and to chose the appropriate type (INTEGER or
REAL) which will allow arithmetic without overflow. Note that
whenever possible INTEGER should be used in preference to REAL
since arithmetic operations on integers are much faster on the
LSI-11 than floating point operations on real numbers.

325
CHAPTER 2 - Data Types and Structures 13

CRASH User's Manual

B. REAL Variables

Real variables refer to 32 bits (4 bytes) of storage. They are
stored in LSI-11 floating-point format.

C. CHARACTER Variables

Character variables refer to up to 255 bytes of storage
depending on the maximum length specified in the declaration
statement. The number of bytes allocated is equal to the maximum
length specified (rounded up to the nearest even number
actually) plus two additional bytes for holding the maximum
length and the current length of the string. The storage
allocated for a character variable (string) is fixed by the
declaration, not by the current length of the string. All
character variables are initialized with a current length of
zero unless an INITIAL value is specified (see section 2.6.B.5).

Note: Due to implementation restrictions CHARACTER ARRAYS
may only have a maximum length of 254 bytes.

D. BIT Variables

Bit variables refer to 16 bits (2 bytes) of storage. There is a
length specification in declarations for bit variables, but this
has no effect on the amount of storage allocated; values are
always stored right-justified in bit variables. Bits are
numbered from 0 to 15, with bit 0 being the least significant
bit, and bit 15 the most significant (BEWARE: Reverse IBM
notat i on).

E. ANALOG and DISCRETE Variables

The ANALOG attribute is used together with certain other
attributes (described in section 2.5B) to associate additional
information with a REAL or INTEGER variable. Analog variables
are typically associated with an I/O device such as an A/D or
D/A converter. In particular, ANALOG variables allow the
particular characteristics of the device to be compensated for
automatically during an I/O operation.

DISCRETE variables are similar to ANALOG variables in that they
are associated with a particular device, however they can be
INTEGER only. They are intended to be used with status settings
of a device.

Both ANALOG and DISCRETE variables belong to a class of
variables known as DELAY variables. Using the DELAY attribute
(described below), a circular list structure of past values
(history) of the variable can be kept.

See the Microcomputer Handbook, Digital Equipment Corp. 1977

14 CHAPTER 2 - Data Types and Structures
326

CRASH User's Manual

2.4 Variable Organization

General Description

A CRASH variable may be either a scalar in which case it
has a single value or an array in which case it has a collection
of values.

Precise Description

A. Scalars

Scalars refer to only a single value. The size and internal
storage layout is determined by the scalar's type and
attributes.

Examples:

SCAL, I, J, COUNT

B. Arrays

With arrays, a single variable name is used to refer to more
than one element of storage. The number of elements is
determined by the dimensions of the array. Each dimension
consists of a lower (optional) and upper bound for subscripts to
be used in that dimension. The default lower bound is 0.
For example, the array named VEC, with one dimension consisting
of a lower bound of -1 and an upper bound of 3, refers to five
elements of storage, namely VEC(-l), VEC(O), VEC(l), VEC(2), and
VEC(3).

Internally, arrays are stored in row major form, i.e. with the
value of the last index increasing most rapidly. For example,
the array named A with three dimensions each having a lower
bound of 1 and an upper bound of 2 appears at ascending storage
locations in the following order:

A{1,1,1), A(l,l,2), Ml,2,1), A(l,2,2),
A(2,l,l), A(2,l,2), A(2,2,l), A(2,2,2)

An array specification is made by including a list of dimensions
as an attribute in the declaration statement.

C. Delay Variables

Delay variables allow the past values (history) of a variable to
be maintained in a circular list structure. Associated with the
variable are several elements comprising the history, a delay
size limiting the number of values in the history, and a current
element pointer. Whenever the variable is referenced by name
without a delay specification the current element is used.
Assignments and input to a delay variable cause a new current
element to be computed.

CHAPTER 2 - Data Types and Structures 15
327

CRASH User's Manual

Internally, delay variables occupy a block of storage-big enough
to contain the maximum number of previous values to be kept. The
current element will initially point to the first element in the
block of memory, unless INITIAL values were specified. In the
case of INITIAL values, they will occupy the first elements of
the list with the current element pointer pointing to the last
initial element (the first one specified in the declaration).
When a new current element is needed, the current element
pointer is incremented by the size needed by a variable element
(1 or 2 words). If the pointer is now beyond the end of the
block of memory assigned to the variable, the size of the delay
variable storage area is subtracted from the current element
pointer, wraping it back around to the first element in the
list. In this way a circular list is formed containing the
current and previous values of the variable. Any element in the
list may be referenced relative to the current element by using
the delay specification (see chapter 8).

2.5 Storage Allocation

General Description

The way in which the storage area for each variable is
allocated can be controlled by use of the AUTOMATIC, STATIC, and
GLOBAL attributes. If none of these three is specified for a
variable, AUTOMATIC is assumed. One exception to this rule is
that in MAIN procedures, STATIC is the default and is used even
if AUTOMATIC is specified.

Precise Description

A. Automatic Storage Allocation

Storage for automatic variables is allocated (and initialized if
an INITIAL attribute was provided) whenever the procedure in
which the variable was declared is activated (i.e. called as a
subroutine or function or invoked as a task), and freed for
reuse by other automatic variables in other procedures or tasks
when the procedure is deactivated (i.e. when it executes a
RETURN statement).

The advantage of AUTOMATIC variables is that the same space can
be used at different times by many automatic variables. The
disadvantages are that variable values are not preserved from
one call (or task invocation) to the next and that there is more
overhead associated with setting up AUTOMATIC variables each
time a procedure is entered.

The AUTOMATIC storage mode is particularly useful with large
arrays which are being used within a procedure for intermediate
calculations and which need not keep their values from call to
call. Another application might, for example, be a situation
where several tasks with large individual storage requirements
are to be scheduled to execute in succession every once in a

16 CHAPTER 2 - Data Types and Structures
328

CRASH User's Manual

while. If AUTOMATIC storage mode is used for most of the
variables, execution can proceed without problems even though
memory might not be large enough to hold all of the task storage
simultaneously.

B. Static Storage Allocation

Storage for STATIC variables is allocated when the program is
loaded; the storage then remains allocated until the program is
unloaded. STATIC variables are initialized (if an INITIAL
attribute was provided) only once at load time. STATIC variables
should be used in preference to AUTOMATIC variables whenever
possible since they are referenced more efficiently, occupy less
space, and require less overhead for initialization.

C. Global Storage Allocation

Storage for GLOBAL variables, like STATIC variables, is
allocated when the program is loaded, and remains allocated
until the program is unloaded. GLOBAL variables behave exactly
like STATIC variables except that they can also be referenced,
outside of the normal rules of scope, by any other task or
procedure, internal or external, in which they are declared. For
example, if variable X is declared to be GLOBAL in two external
procedures, both procedures will be referencing the same
location in storage when they use X while if X had been declared
to be STATIC there would be a separate version of X for each
procedure. GLOBAL variables, along with parameters, are the only
way that tasks and external procedures can communicate with each
other.

All GLOBAL variables used in a program must be declared and
initialized if desired in the MAIN procedure. Each declaration
for the same GLOBAL variable must have the same type and
attributes (be careful to match these declarations properly,
CRASH does not check this since each task or external procedure
is compiled separately). GLOBAL variables names must be 8 or
less characters in length.

2.6 Declaration Statements

General Description

Declaration statements are the means of associating types
and attributes with identifiers for variables used within a
procedure or task. Declaration statements are required at the
beginning of every CRASH procedure or task for all variables
which are intended to be defined within the procedure. All
variables must be declared before they are used.

The basic format of a declaration statement is:

<type> <identifiers> <attributes>,
<identifiers> <attributes>, ;

CHAPTER 2 - Data Types and Structures 17
329

CRASH User's Manual

Where:

<type> specifies the type of all variables declared in this
statement (up to the semicolon).

<identifiers> is either a single identifier or a list of
identifiers separated by commas and enclosed in parentheses.

<attributes> specifies a list of attributes, separated by
blanks, to be associated with the preceding <identifiers>.

Thus, declaration statements may look like:

type identifier ;
type (identifier, ..., identifier) attribute ;
type identifier attribute...attribute, identifier attribute;
type (identifier, identifier), identifier attribute ;
type identifier, identifier, identifier ;

The following two sections discuss the details of
specifying <type>s and <attributes> in declaration statements to
describe the variable types discussed in section 2.4.

Precise Description

A. Types

The first word in a declaration statement specifies the type for
the entire statement (up to the semicolon). Valid specifications
for types are:

INTEGER
REAL
BIT(i) 1<= i <=16 i=maximum no. of bits
CHARACTER(n) 0<=n <=255 n=maximum character length
ROUTINE
TASK

The first four of these tell the CRASH compiler what element
size is to be used as well as in what internal format the data
will be stored for each identifier declared in this statement.
For instance, INTEGER specifies an element size of 2 bytes and a
two's complement internal format whereas REAL specifies 4 bytes
and LSI-11 floating-point format. BIT(i) always denotes an
element size of 2 bytes no matter what "i" is.

For scalars, the element size is the size of the variable; for
arrays the element size is the size of a single element (A(I,J))
of the array. For procedures, the element size is the size of
the value which the procedure returns if it is called as a
function. For delay variables, the element size is the size of a
single "history" (delay) element.

"i" and "n" are both integer constants. If i>16 or i<l, a

13 CHAPTER 2 - Data Types and Structures
330

CRASH User's Manual

warning message is printed and 16 is assumed. If n>255 or n<0, a
warning message is also printed and 255 is assumed. When
declaring procedure parameters, "i" and "n" should be replaced
by asterisks (*) (which signal that that value has already been
specified) since the lengths declared in the calling program
program will be used. If numbers are used instead of asterisks,
a warning message will be printed and the numbers will be
ignored.

ROUTINE is used to declare procedures which do not return
values. Likewise, TASK is used to declare tasks which,
presumably, will be referenced in scheduling statements, and
which do not return values. In both cases, an element size is
not needed. Procedures which return values are declared by
specifying the type (REAL, INTEGER, or CHARACTER) of value to be
returned, and additionally specifying either the INTERNAL or
EXTERNAL attribute (see chapter 3).

Examples:

CHARACTER(26) ALPHABET;
INTEGER (I,J,K) ;
BIT(8) MASK,HEX_CON;
ROUTINE (PR0C1,PR0C2);
BIT(*) PARM;

B. Attributes

For each group of one or more identifiers within a declaration
statement, a list of attributes can be specified. If more than
one attribute is specified, the attributes should be separated
by blanks. The list is terminated by a comma or the end of the
statement (;). Attributes can appear in any order except for 4
cases mentioned below. Attributes specified more than once will
cause a warning message to be printed.

B.l. ANALOG, DISCRETE, LDN, DELAY, SCALE, OFFSET and CLAMP

Analog variables are declared by specifying the ANALOG attribute
with an INTEGER or REAL type. A fully specified declaration for
an analog variable, ANGLE, would appear as below:

type ANGLE ANALOG DELAY(d)
SCALE(s) OFFSET(o) LDN(n) CLAMP(m,p) iotype;

Where:
"type" is either INTEGER or REAL
"s" is a real constant specifying the scale factor. If the

SCALE attribute is omitted, "s" defaults to 1.0.
"o" is a real constant specifying an offset value. If the

OFFSET attribute is omitted, "o" defaults to 0.0.
"d" is a positive integer constant specifying a delay value.

If the DELAY attribute is omitted, "d" defaults to 1.
"n" is an integer constant between 0 and 30 specifying a

CHAPTER 2 - Data Types and Structures 19
331

CRASH User's Manual

logical device number. If the LDN attribute is omitted, "n"
defaults to -1 which will remain unassigned until runtime. If
I/O is attempted with an LDN of -1, an error will be recognized
by the operating system, and program execution will terminate.

"m" is an integer constant specifying the lowest value to be
output to a device.

"p" is an integer constant specifying the highest value to be
output to a device. If the CLAMP attribute is omitted, "m",np"
default to -32768,32767 (no clamping).

"iotype" is either BYTE or WORD. If omitted, the default is
WORD. See section B.7 below.

The SCALE, OFFSET, BYTE, WORD, and CLAMP attributes are used
only during I/O. More information about their use appears in
chapter 7.

If the analog variable being declared is a procedure parameter,
the LDN, DELAY, SCALE, OFFSET, BYTE, WORD, and CLAMP attributes
should not be specified since they will take their values from
the declaration in the calling program. These attributes may be
specified in any order.

Discrete variables are declared by specifying the DISCRETE
attribute with an INTEGER type. A fully specified declaration
for a discrete variable, STAT, would look like:

INTEGER STAT DISCRETE DELAY(d) LDN(n) iotype;

Where the rules for "d", "n", and "iotype" are the same as with
ANALOG declarations. These attributes may appear in any order.
DISCRETE variables are always INTEGERS.

Examples:

INTEGER COFFEEJTEMP DISCRETE BYTE LDN(l);
INTEGER ANTENNA_POSITION ANALOG DELAY (10)

WORD SCALE(.6) OFFSET(180.) LDN(12);

B.2. GLOBAL and STATIC Attributes

These attributes can be used to specify a GLOBAL or STATIC
storage allocation scheme. These attributes are valid only with
INTEGER, REAL, BIT, and CHARACTER data types and are illegal
with types TASK and ROUTINE.

Examples:

REAL (SW1, SW2) GLOBAL;
BIT(8) MASK STATIC;

20 CHAPTER 2 - Data Types and Structures
332

CRASH User's Manual

B.3. INTERNAL and EXTERNAL Attributes

The INTERNAL and EXTERNAL attributes are used to declare
procedures. The type, in this case, refers to the type of the
procedure's returned value (if any). The type ROUTINE should be
used if the procedure doesn't return a value. In procedure
declarations, one of these two attributes must appear unless the
type is ROUTINE or TASK; in that case, if no attribute is
specified, the default is EXTERNAL. Note that if type TASK is
specified, INTERNAL will be an illegal attribute since tasks are
always EXTERNAL. The INTERNAL or EXTERNAL attribute, if present,
must be the first attribute after the identifiers in the
declaration statement. This constraint is reasonable since no
other attributes are legal in a procedure declaration. An
INTERNAL procedure is one which is defined inside the scope of
the procedure which is declaring it. EXTERNAL procedures are
defined outside the scope of the declaring procedure and may be
compiled separately from the declaring procedure.

Examples:

REAL INTjrO__REAL INTERNAL;
INTEGER REAL_TO_INTEGER INTERNAL;
ROUTINE (INIT, CLOS);
ROUTINE UPDATE INTERNAL;
TASK CONTROLLER EXTERNAL;
TASK (READER, WRITER);

B.4. Array (Dimension List) Attribute

Arrays are declared by specifying a dimension list as an
attribute in the declaration statement. The syntax for a
dimension list is as follows:

(dim, dim, dim, .. .)

Where:
"dim" denotes either "low^igh" or just "high"
"low" is the lower bound
"high" is the upper bound

"low" and "high" are either integer constants with an optional
sign or unsigned integer variable names. If "low" is not
specified, 0 is assumed. Up to 62 dimensions are allowed.

As was the case with the CHARACTER and BIT variable types,
arrays which are procedure parameters must be declared with
asterisks in place of the usual "dim" groups since the
dimensions declared in the calling program are the ones that
will be used. If asterisks are not specified for parameter
arrays, a warning message will be printed.

The dimension list attribute must appear as the first attribute
after the identifiers in the declaration statement. Note also

CHAPTER 2 - Data Types and Structures 21
333

CRASH User's Manual

that this attribute is meaningless with the ROUTINE or TASK type
since procedures can only return scalar values.

Some special comments are in order about the use of integer
variable names within an array dimension list. This construct
implicitly invokes an extended version of the automatic storage
allocation scheme. With a regular automatic array (with constant
dimension bounds), the size of the array, but not the storage
location, is known at CRASH compile time. But when integer
variables are present in the dimension list (dynamic arrays),
neither the size or the location is known. Naturally, when fewer
things are known at compile time, more things must be done at
run time resulting in less efficient code with more overhead.
Thus, dynamic arrays should only be used when storage is very
tight since they do tie up less space with large arrays
especially. (For example, if a number N which might vary from 50
to 500 is to be read in, and a vector with N elements is
required to handle the corresponding data, it would be
worthwhile to make that vector dynamic with an upper bound of N
rather than to just make the upper bound 500 and always reserve
500 elements for the worst case.) Due to the way dynamic arrays
are implemented, dynamic arrays must always be automatic, and
the integer variable dimensions used must always be previously
initialized GLOBAL or STATIC variables, or automatic variables
from lower level procedures whose values can be accessed through
the usual rules of scope.

Examples :

REAL (INDEX,BRAND,PRICE,QUANTITY) (1:100) GLOBAL;
INTEGER YEAR (1976:1984) STATIC;
INTEGER AREA(1:DIM1,-1:DIM2,1:DIM3);
BIT(*) PARM (*,*,*);

B.5. INITIAL Attribute

Variables can be initialized to prescribed values via the
INITIAL attribute, the syntax is:

INITIAL(cons,cons,cons,...)

Where :
"cons" denotes a signed integer or real constant or a string

constant. A "cons" may be prefixed by "integer #" to specify a
duplication factor on "cons". This makes it much easier to
initialize a sparse matrix, or to initialize an array to a
single value. The type must agree with the type of the
declaration, however real-to-integer and integer-to-real
conversions will be performed if necessary (with a warning
message). If a string constant's length exceeds the maximum
length declared, the string constant is truncated and a warning
message produced. The INITIAL attribute must be the last
attribute speci fied.

22 CHAPTER 2 - Data Types and Structures
334

For scalars, only one "cons" is allowed. For arrays, the number
of "cons" must not exceed the number of elements in the array;
the constants are assigned to increasing array element storage
locations starting at the first location (array elements are
stored in row major form). There is no way to initialize
selected individual array elements out of this order. For delay
variables, the number of "con"s must not exceed the delay size
as specified in the DELAY attribute. Initial values for DELAY
variables are assigned from newest to oldest beginning with the
current element.

The INITIAL attribute is illegal for:
 procedures
 dynamic arrays
 parameters
 GLOBAL variables, unless in the MAIN procedure

Examples:

INTEGER CONS10 STATIC INITIAL(10),COUNTER rNITIAL(O);
CHARACTERS) CMDS(3) INITI AL ('BEGIN' ,'END' ,'HELP') ;
REAL (DIRECTION, TEMPERATURE, HUMIDITY) ANALOG

DELAY(3) INITIAL (0. , 0 . , 0 .) ;
INTEGER MASK INITIAL(H"OlFF");
INTEGER BIG(150) INITIAL(50#1, 50#2, 50#3, 0);

B.6. MAP Attribute

The MAP Attribute provides a way to name contiguous fields (Bit-
strings, or character substrings) of an integer or character
variable. There can be a maximum of 16 fields specified for each
variable. These fields may be of any positive length, and may
overlap each other. The CRASH scanner will generate a macro
definition for each field description. This enables the user to
refer to the specific bits or characters with a simple
identifier, instead of having to put the field description along
with every reference of the field. The syntax for a MAP
attribute is as follows:

MAP(name[field], name[fieid], ... , name[field])

Where:
"name" denotes the name assigned to the substring of the

variable being declared.
"field" denotes either:

start,length or start
"start" is the number of:

1) The first character in the substring.
2) The least significant bit in the bit-string

"length" is the number of:
1) characters in the substring.
2) bits in the bit-string.

Note: Characters are numbered starting with "0" being the first

CHAPTER 2 - Data Types and Structures 23
335

CRASH User's Manual

character in a string. Bits are numbered with the least
significant bit as zero and the most significant bit being
fifteen. If no length field is specified, the field is taken as
the rest of the string, or all bits from start to bit 15. It is
also important that only one variable be declared per
declaration statement when the MAP attribute is used, since
there can be only one macro with "name".

MAP variables appear to be simple variables to the programmer,
however there are some restrictions upon the use of MAP
variables which do not apply to a simple variable. MAP variables
may not be used to specify a parameter to a procedure (they may
be arguments to a procedure, though), nor can they be used in a
delay specification. They cannot specify a priority for a task
or be used as a task identifier (see chapter 6). Except for
these case, MAP variables behave as if they were simple
variables.

Examples:

BIT(16) TRAIN MAP(SPEED[0,5],TRACK[6,6],DIR[5,1],BANK[12,4]);
CHARACTER(80) INBUF MAP(COMMAND[0,5],COMMENT[5]);
INTEGER TWO_BYTES MAP(LOW[0,8],HIGH[8]);

B,7. BYTE and WORD Attributes

The BYTE and WORD attributes are used with DISCRETE and ANALOG
variables to specify the size of the data expected to and from
the device connected to the LDN. The default is WORD (16 bits).

Examples:

REAL SERVO POSITION ANALOG BYTE LDN(O);

24 CHAPTER 2 - Data Types and Structures
336

CRASH User's Manua^

2.7 Reserved Words

General Description

The following words are reserved by CRASH and cannot be
used as variable, task, procedure, or macro names:

$COPY AFTER ANALOG AND AT
BIT BY BYTE CALL CANCEL
CASE CHARACTER CHECK CLAMP DELAY
DISCRETE DO ELSE END EVERY
EXIT EXTERNAL FOR GET GLOBAL
GO GOTO IF IGNORE IN
INITIAL INPUT INTEGER INTERNAL LDN
LENGTH LOCK MAIN MAP MAXLEN
MIN MOD MSEC NEXT NOT
NUMARGS OFFSET ON OR OUTPUT
PACKED PC PRIO PROCEDURE PUT
REAL RECORD RETURN REVERT ROUTINE
Rl R2 R3 R4 R5
R6 R7 SCALE SEC SP
START STATIC STOP TASK THEN
TO UNLOCK UNTIL WAIT WHILE
WORD XOR CARD

CHAPTER 2 - Data Types and Structures
337

25

CRASH User's Manual

CHAPTER 3 - PROCEDURES

Introduction

A CRASH program consists of one or more EXTERNAL procedures
or tasks each of which may contain one or one more INTERNAL
procedures. The INTERNAL procedures may themselves contain other
INTERNAL procedures. Any procedure can be used as either a
subroutine or a function and can, optionally, be given a list of
arguments when it is invoked.

3.1 Procedure Types

General Description

EXTERNAL, INTERNAL, Four types of procedures can be used:
TASK, and MAIN.

Precise Description

A._ EXTERNAL

An EXTERNAL procedure is the basic unit processed by CRASH. A
separate object module (an *11ASR assembly) is produced for
every EXTERNAL procedure. These object modules need not be
produced in the same CRASH run; several files containing
separate object modules can be combined later using *LINK11.

B. INTERNAL

An INTERNAL procedure is a procedure which is defined within
either an EXTERNAL or another INTERNAL procedure. A maximum
nesting of 3 INTERNAL- procedures inside an EXTERNAL procedure is
allowed. Note that this constraint applies to nesting of
procedure definitions only. An arbitrary nesting of procedure
calls is allowed. The procedure definition nesting limitation is
due to implementation restrictions and not imposed by the nature
of CRASH.

C\ TASK

A TASK is an EXTERNAL procedure which is intended to be set up
by scheduling statements to execute independently at specified
time intervals or as a result of an external event. Internally,
a TASK looks the same as a regular EXTERNAL procedure except
that it may not have any parameters passed to it upon
i nvocation.

The PDP-11 Assembler and Link-Editor: A User's Guide to *11ASR
and *LINK11, University of Michigan Computing Center Memo 286,
1973
Ibid.

338 CHAPTER 3 - Procedures 27

CRASH User's Manual

D. MAIN

A MAIN
must be
Program
MAIN pr
regular
contain
variabl
have in
declare
regardl
in havi

procedure is also a type of EXTERNAL procedure. There
one (and only one) MAIN procedure in every program.
execution will begin with the first statement in the

ogram. Internally, a MAIN procedure looks the same as a
EXTERNAL procedure except that it has a special section

ing GLOBAL variables associated with it. All global
es must be declared in the MAIN procedure, and if they
itial values they must be specified here. Variables
d in the MAIN procedure always have the STATIC attribute
ess of how they are declared since no advantage is gained
ng automatic storage allocation for the MAIN procedure.

When the $D (debug mode) toggle is turned on, the code
emitted for the MAIN procedure is modified so that upon entry to
the MAIN procedure the DEBUG command system is invoked. Any
procedures which are to be debugged using the CRASH DEBUG
package must be declared in the MAIN procedure and must also be
compiled with the $D toggle enabled. .See chapter 9 for
information of the use of control toggles and chapter 14 for a
complete description on the use of the debugger.

3.2 Subroutines And Functions

General Description

While a MAIN procedure is invoked by the OSWIT RUN command
and a TASK is invoked via scheduling statements, INTERNAL and
EXTERNAL procedures are referenced as either subroutines or
functions.

Precise Description

A. Subroutines

A procedure is referenced as a subroutine via a CALL statement.
For example:

CALL PRC(A, 1., 2*B+C);

Where presumably the number and types of the arguments
correspond to the parameters defined in the definition of
procedure PRC. Subroutines generally pass back information by
changing the values of some of the arguments or by setting
commonly accessed GLOBAL variables. Arguments are passed by
reference except for constants and expressions which are passed
by value.

Operating System With Trains. See the OSWIT Users Manual

28 CHAPTER 3 - Procedures 339

CRASH User's Manual

B. Function's

A procedure is invoked as a function by the appearance of the
procedure name (and associated arguments) in an expression. The
procedure is expected, in this situation, to RETURN a scalar
value having the type specified in the procedures's declaration.
For example:

INTEGER PROC EXTERNAL;
• • •
VAL = 2 * PR0C(A,B,7.);

Here procedure PROC is given 3 arguments and is expected to
return an integer value which is multiplied by 2 and used as a
new value for variable VAL. A procedure returns a value with a
RETURN statement which is of the form:

RETURN expression;

The expression will be converted, if necessary to the type
specified in the procedure definition statement. CHARACTER
expressions cannot be automatically converted to INTEGER or
REAL. The subroutines D2FL0AT and D2BIN (chapter 11) can be used
to perform these conversions. Numeric to character conversions
will be automatically applied. If there is no expression (i.e.
"RETURN ;") the returned value is undefined. Usually this type
of RETURN statement is used if the procedure is always expected
to be called as a subroutine.

Note: the same procedure can always be called as either a
function or a subroutine. If it is called as a subroutine and
RETURNS a value, that value will be ignored. Functions can, if
desired, change the value of parameters in the same way that
subroutines do.

3.3 Procedure Definitions

General Description

A procedure is a sequence of statements headed by a
procedure definition statement, followed (optionally) by
declaration statements, followed by at least one executable
statement, and terminated by an END statement. An entire
procedure is itself treated by CRASH as an executable statement;
thus, one of the executable statements within a procedure can be
another procedure. This nesting of procedures is allowed to a
maximum of four levels (the external procedures and tasks must
always be at level 0, internal procedures can occur at levels 1,
2, and 3) .

340 CHAPTER 3 - Procedures 29

CRASH User's Manual

Precise Description

A* Procedure Definition Statement

A procedure definition statement has the following form:

label: type PROCEDURE (parl/par2,...,parn) [MAIN or TASK] ;

Where :
"label" is the name of the procedure. If the procedure is

EXTERNAL, MAIN, or a TASK, the name must be 8 characters or less
long and must be unique from the names of all other such names
or GLOBAL variable names within the program.

"type" specifies the type of the scalar value to be returned
by the procedure (i.e. INTEGER, REAL, BIT, or CHARACTER). If
"type" is missing, it defaults to INTEGER.

"(parl, par2, ..., parn)" is the procedure's (optional)
parameter list, "parl" ... "parn" are the names of parameters
which will be passed to the procedure as arguments whenever it
is invoked as either a function or a subroutine. Each parameter
defined in this list must be declared in the declaration section
of the procedure. The "pars" must be the simple name of a
variable. Subscripted, sub-unit selected, and MAP variables may
not be used to specify the parameter list of a procedure. If on
a given invocation of the procedure, fewer arguments are
provided than are defined here, the remaining parameters are
left undefined, (the pre-defined function NUMARGS can be used to
find the actual number of arguments that were passed.) No check
is made to see if the type of each argument matches the type of
Tts corresponding parameter as declared within the procedure;
care must be taken to insure that these always match. Procedure
names or statement labels cannot be passed as parameters.

If MAIN is present for EXTERNAL, level 0, procedures only,
the procedure will be invoked as the MAIN procedure when the
program is run. Similarly, TASK is used to designate an
EXTERNAL, level 0, procedure as a task. MAIN procedures and
TASKs cannot have parameter lists.

B. Declaration and Executable Statements

Declaration statements (if any) for parameters and local
variables which are to be used by the procedure should come
first. All parameters must be declared; no storage type (i.e.
AUTOMATIC, STATIC, or GLOBAL) should be specified for parameters
since the storage type of a parameter depends on the type of the
corresponding argument, and could vary from call to call.

There must always be at least one executable statement in every
procedure.

30 CHAPTER 3 - Procedures 342

CRASH User's Manual

£ END Statem nt

ND statemen is of the form:

El D label ;

r' :
" abel" is th name of the procedure as given earlier in the
«ci dure defi ition statement. This statement ends the
c dure. Note, vhile this statement is always the last line in
h procedure, it is not necessarily the last statement
c ted. A RE URN statement (there can be several in a
»c dure) cause the procedure to return immediately to the
i ng program If execution flows into the END statement, a
iT RN ;" is ma a.

342
CHAPTER 3 - Procedures 31

CRASH User's Manual

3.4 Sample Program

TEST: PROCEDURE MAIN; /* HAVE TO HAVE A MAIN PROCEDURE */
REAL EXT_PRC EXTERNAL; /* COULD BE COMPILED EARLIER */
INTEGER INT_PRC INTERNAL; /* THIS IS DEFINED BELOW... */
ROUTINE EXT_SUB EXTERNAL; /* JUST AN EXTERNAL SUBROUTINE */
INTEGER (A,B,C,D); /* DEFINE SOME LOCAL VARIABLES */

CALL INT_PRC(A,B);
C = INT_PRC(l,A+B/2);
D = EXT_PRC(A,B);
CALL EXT SUB(A,B);

/* LEAVING OUT THE DETAILS ... */

/* USE INT_PRC AS A SUBROUTINE */
/* USE INT_PRC AS A FUNCTION */
/* INVOKE THE EXTERNAL PROCEDURE */
/* CALL THE SUBROUTINE */

/' MORE DETAILS ... */

INT_PRC: INTEGER PROCEDURE(X,Y); /* PROCEDURE INT PRC */
INTEGER (X,Y); /* DECLARE THE PARAMETERS */
INTEGER Z; /* DECLARE A LOCAL VARIABLE */

RETURN 2+Z; /* RETURN A VALUE HERE */

RETURN; /* RETURN...BUT WITH NO VALUE THIS TIME */

END INT PRC; /* END OF PROCEDURE INT PRC */

END TEST; /* END OF MAIN PROCEDURE TEST */

32 CHAPTER 3 - Procedures 343

CRASH User's Manual

CHAPTER ^4 - EXPRESSIONS AND ASSIGNMENTS

Introduction

An expression is a rule for computing a numerical, logical,
or string value. There are four main types of expressions:

Ari thmetic
Relational
Boolean
String

There are five operators which are used to form expressions:

Arithmetic (+, -, *, /, **, MOD)
Relational (<, >, =, etc.)
Boolean (AND, OR, NOT, XOR)
Concatenation (II)
Sub-unit selectors ([s,l])

An assignment is used to change the value of a variable to
the value of an expression.

4.1 Arithmetic Operators And Expressions

General Description

An arithmetic expression is a sequence of numerical
constants and variables, called operands, and arithmetic
operators.

Precise Description

A. Syntax of an Arithmetic Expression

An arithmetic expression is defined recursively. The following
rules specify all possible arithmetic expressions:

1) var 2) exp + exp 3) exp * exp

4) con 5) exp - exp 6) exp / exp

7) exp ** exp 8) (exp) 9) function

10) exp MOD exp

Where:
"var" is any integer or real variable, delay variable,

subscripted variable (chapter 8), or bit selected variable (see
section 4.4 below).

"con" is any integer or real constant.
"function" is any real or integer function invocation

(chapter 3).

CHAPTER 4 - Expressions and Assignments 33
344

CRASH User's Manual

"exp" is any expression - arithmetic, relational, or boolean.

*, +, -, /, and ** are the arithmetic operators and have the
usual meanings attached to them:

* denotes multiplication
+ denotes addition

denotes subtraction
/ denotes division
** denotes exponentiation
MOD is the remainder of dividing exp by exp

xamples:

4 Constant
ALPHA1 Variable
A23 + 15 Exp + Exp
(B3 + 6) * (ERR - 4) Exp * Exp
A**2 Exp ** Exp
3.5/(C+6.2) Exp / Exp
SIN(2*PI) Function
2 * FUNCl(A) Exp * Exp
24.3 + MAT(INDEX) Exp + Exp

B. Operator Precedence

When a legal CRASH expression is evaluated, operations are
performed in an order determined by the precedence of the
operator. The precedence of arithmetic operators in CRASH, in
order of decreasing precedence, is:

** exponentiation
*, /, and MOD multiplication, division, and remainder
+ and - addition, subtraction, unary plus and minus

Parenthesis can be used to enclose a term which is to be
evaluated out of the normal precedence. Parenthesis have the
lowest precedence in CRASH. When two operations have the same
precedence, the one occurring first (the leftmost one) is
evaluated first.

Example:

(ALPHA + 2) * 3.0 ** SIN(BETA + 1) + 43.2 / 31

The order in which operations are performed in the above
statement are indicated by superscripts.

C. Type Conversions

Type conversions are automatically applied by CRASH. When
evaluating an operation in an expression the types of the two
operands are checked. If both are integer or bit values, the
operation is performed using integer arithmetic. If, however,

34 CHAPTER 4 - Expressions and Assignments
345

CRASH User's Manual

one or both operands are real, the operation is performed using
real arithmetic. The operand which is integer will be converted
to real before the operation is performed. Since CRASH evaluates
an expression one operator at a time, it is possible to have
part of an expression computed using integer arithmetic and part
computed in real. If any term in the expression is real the
final result will have a real value, although part of the
expression may have been computed in integer. Integer
expressions can be forced to be evaluated using real arithmetic
by adding "0.0" to one of the operands.

4.2 Logical Expressions

General Description

Logical or Boolean expressions are used to make decisions
concerning the flow of control in a CRASH program. A logical
expression may have one of two possible values - true (least
significant bit a one) or false (least significant bit a zero).
Relational operators and Boolean operators are used to form a
logical expression.

Precise Description

A. Relational operators

A relational expression is a type of logical expression which
involves a relational operator. Relational operators perform a
value comparison between the two operands. The syntax of a
relational expression is:

exp rel exp

Where:
"exp" is any constant, variable, or expression,
"rel" is one of the following relational operators:

= is equal to
~= is not equal to
> is greater than
~> is not greater than
>= is greater than or equal to
< is less than
~< is not less than
<= is less than or equal to

"NOT" may alternately be used instead of the not sign (~). The
value of the expression is true if the relation holds true.
Character expressions are compared first by length, then
character by character if the lengths are equal (the ASCII
collating sequence is used). Internally, the relational
expression is represented as a BIT(l) variable.

Examples:

CHAPTER 4 - Expressions and Assignments 35
346

CRASH User's Manual

BIG > SMALL
(2+3) > 4
CHAR1 = INBUF
CATS ~= DOGS

B. Boolean Operators

Boolean operators are used to perform the logical AND, OR, NOT,
and EXCLUSIVE OR functions on CRASH expressions. They are
especially useful for combining several relational expressions
into a more complex compound conditional. The legal CRASH
boolean expressions are as follows:

1) exp AND exp 2) exp OR exp 3) NOT exp

4) exp & exp 5) exp I exp 6) " exp

7) exp XOR exp

Where:
"exp" is any integer or bit constant, variable, or

expression. REAL expressions may not be used in a boolean
expression and will not be converted to INTEGER.

"AND" and "&" mean to perform the logical AND of the two
expressions. "OR" and "I" mean to perform the logical OR of the
two expressions. "NOT" and "~" are the logical negation
operators. "XOR" is the logical EXCLUSIVE OR of the two
expressions. All boolean operators work on a 16 bit value and
produce a 16 bit result. Since all BIT variables occupy 16 bits
no matter what size they were declared to be this should cause
no trouble.

Examples:

TYPE AND TYPEMASK
SWITCHWORD | SET_7
(NUM > SMALLEST) & (NUM < LARGEST)
(E(l) I E(2) I E(3)) & EMASK
CHECK_SUM XOR DATAWORD
(A OR B) & (NOT C)

4.3 Concatenation And String Expressions

General Description

An expression can be formed which has a character or string
value. The only string operator is concatenation which combines
two (or more) strings into a longer string.

36 CHAPTER 4 - Expressions and Assignments
347

CRASH User's Manual

Precise Descripti on

The syntax for concatenation is:

expl || exp2 I| ... || expn

Where :
"exp" is any CRASH constant, variable, or expression. "exp"

can be of any type - integer, real, or character. If the type is
numerical, it is converted into an ASCII character string. Real
numbers occupy an 11 character field, integers take up a 6
character field. If the whole field is not needed, blanks are
padded on the left. If a concatenation results in a string
longer than 255 characters, an ERROR trap is made to the
operating system, and a message is printed to that effect. The
program can be restarted from that point and the concatenated
string will appear to have been truncated at 255 characters.

Examples;

In the following example, several constant strings are
concatenated with some date information in integer form.

'TODAY IS ' || DAY || ', ' || MONTH 11'"
I I DATE || ' , ' || YEAR | | ' . ' ;

If DAY=,FRIDAY', DATE=26, MONTH='AUGUST', AND YEAR=1977,
the result of the concatenation is a string with the following
value:

TODAY IS FRIDAY, AUGUST 26, 1977.

4.4 Sub-unit Selection

General Description

CRASH also has a way to reference, or to assign values to,
individual bits of an integer or bit variable, or individual
characters of a character variable.

Precise Description

Individual bits or characters in a variable may be
referenced. A field description is used to specify which bit or
character starts the field, and how many are in the field. A
variable which has a field description appended to its name is
considered to be a single variable, and may be used in
expressions, etc. like a simple variable. The syntax is:

var [start] or var[start,length]

Where :
"var" is any simple bit, integer, or character variable,
"start" is the number of:

CHAPTER 4 - Expressions and Assignments 37
348

CRASH User's Manual

1) The first character in the sub-unit
2) The first bit in the subunit

"length" is the number of:
1) Characters in the field
2) Bits in the field.

"start" and "length" can be any integer or bit constant,
variable, or expression.

Examples:
15 8 7

LOW_BYTE = BITS[0,3]; I I I I I I I I I I I I I I I I I
HIGH BYTE = BITS[8,8];
HIGH_BYTE = BITS[8]; HIGH_BYTE I LOW_BYTE
OUTBUF[16,6] = DATE;
COMMAND = INBUF[0,BREAKCHAR-1];

4.5 Assignment Of Values

General Description

An assignment statement is used to change the value of a
variable to some new value specified by a CRASH expression.

Precise Description

A. The Assignment Statement

An assignment involves the use of the assignment or substitution
operator. The syntax of an assignment statement is:

var = exp;

or

varl ,var2,...,varn = exp;

Where:
"var" is the variable being assigned to.
"exp" is any type compatible CRASH expression.

The value of the expression is computed. Any necessary
conversions are made, and the new value of "var" is the value of
the expression.

B. Type Conversions

If the value of "exp" is a character string, the variable must
be of character type or an error will occur. In all other cases,
the value of the expression will automatically be converted to
match the type of the variable. Assignment of a REAL value to an
INTEGER variable will result in a truncating conversion. A
rounding conversion is done by adding "0.5" to the value before
the conversion.

38 CHAPTER 4 - Expressions and Assignments

349

CRASH User's Manual

C. Multiple Assignments

If a list of variables is specified (the second form in A
above), all of the variables are assigned the value of the
expression. The list of variables is processed from right to
left. The variables must be of compatible types. Consider the
following:

< Processing Order
A,B,C = 6;

A, B, C can be either real or integer, and no problems will
occur. If C is character, the expression will be converted to
character and assigned to C. A and B must then also be
character, or an illegal conversion will be recognized. By
suitable ordering, these problems can be avoided. If the order
had been "C, A, B" then the final result will be converted to
character after the assignment to A and B, and no error will
occur.

Examples;

B = 7;
CHAR1 = 'THIS IS A TEST';
CHAR2, NUM1, NUM2 = 0.0;
TABL{2) = VAL;
RESULT = A + B + C + (4**EXPO);
SINEBETA = SIN(BETA);

CHAPTER 4 - Expressions and Assignments 39

350

CRASH User's Manual

i_.6 Complete Operator Precedence

General Description

A complete list of the precedence of operators in CRASH is
given below. Parenthesis have the lowest precedence and are used
to override the normal precedence of operations.

functions, subscripts, delay specifications,
sub-unit selections

**

Arithmetic *, /, MOD
+ , -

Concatenation I I

Relational <, >, =, <=, >=, ~=, ~>, ~<

NOT, "
Boolean AND, &

XOR
OR, I

Assignment

()

40 CHAPTER 4 - Expressions and Assignments
351

CRASH User's Manual

CHAPTER 5_ - CONTROL CONSTRUCTS

Introduction

The actual work done by a program is performed by
assignment and I/O statements. Other statements, called control
constructs specify the structure and order of execution of the
statements.

The following control constructs are included in the
definition of CRASH:

DC-
DO cvar = init TO final BY inc;
DO cvar = expl, exp2, ..., expn;
DO WHILE exp;
DO UNTIL exp;
DO CASE exp;
EXIT DO;
EXIT DO label;
NEXT DC-
NEXT DO label;
IF exp THEN statement
IF exp THEN statement ELSE statement
GO TO iabel;

5.1 DO Construct

General Description

The DO construct performs three functions in CRASH. The
first is repetitive execution of a sequence of statements. The
second is selection of one of several statements for execution.
Finally, a "DO" is provided which allows a group of statements
to be considered as one statement.

Precise Description

A. Levels, Nesting and Scope

In CRASH, each DO group is considered as one single statement,
although there may be many statements inside the group. The
statements that comprise the group are nested one level higher
than the statements in which the DO group appears. A DO
statement can appear inside a DO group, so DO statements can be
nested to any level.

B. Types of DO statements

There are 6 types of DO statements in CRASH. In the following
descriptions, "body of group" is any sequence of CRASH
statements.

CHAPTER 5 - Control Constructs 41
352

CRASH User's Manual

B.1 The simple DO

The simple DO is used whenever a sequence of statements needs
to be considered as a single statement. The uses will become
clearer in the section on IF...THEN... ELSE below. The form is:

DO;
statementl
statement2
• • •
statementn

END;

I body of group

Where:
"statement" is any CRASH statement.

Note that the whole DO group is itself considered to be a single
statement on the level in which it appears.

B.2 The iterated DO

The iterated DO is used to execute a sequence of statements
repeatedly for values of a control variable. There are two forms
of iterated DO:

DO cvar = init TO final;
body of group

END;

and

DO cvar = init TO final BY inc;
body of group

END;

Where:
"cvar" is the variable to be used to control the iterations.
"init" is the initial value assigned to "cvar" before the

first execution of the loop.
"final" is the value against which "cvar" is tested to

terminate execution of the loop.
"inc" is the amount to add to "cvar" after each execution of

the loop.
"init", "final", and "inc" can be any constant, variable or

expression which can be evaluated to yield an integer. "cvar"
may be either an integer or real variable.

If "BY inc" is not specified, "cvar" is incremented by one
each time.

Execution of the loop occurs in the following order:

1) "init" is evaluated and assigned to "cvar"
2) "cvar" is compared with "final"
3a) Variable with positive value or positive constant

42 CHAPTER 5 - Control Constructs
353

CRASH User's Manual

"inc" :
If "cvar" is greater than "final", execution
of the loop terminates.

3b) Variable with negative value or negative constant
"inc":

If "cvar" is less than "final", execution
of the loop terminates.

4) The body of the group is executed.
5) "inc" is added to "cvar".
6) continue with 2).

B.3 The Stepped DO

The stepped DO is like the iterated DO, except that the loop
is executed only for specific values of the variable. The form
is:

DO cvar = expl, exp2, .,., expn;
body of group

END;

Where :
"cvar" is the variable which will take on the values

specified in the list of expressions.
"exp" is any CRASH constant, variable, or expression. The

expressions will be converted to integer before assignment to
"cvar".
The loop is executed once for each value in the list, "cvar"
will take on the first value the first time through the loop,
the second value on the second time, and so on until the list is
exhausted. Execution then continues with the first statement
after the END.

B.4 The DO WHILE

The DO WHILE is used when a sequence of statements is to be
executed as long as some condition remains "true". The form is:

DO WHILE expression;
body of group

END;

Where :
expression is any expression in CRASH which can be evaluated

to yield a true (least significant bit a one) or false (least
significant bit a zero) boolean value. If the expression has a
real value (for some peculiar reason), it will be converted to
integer before its least significant bit is tested.
The DO WHILE group is executed in the following order:

1) The expression is evaluated.
2) If it has a false value(least significant bit = 0),

execution of the group terminates.
3) The body of the group is executed.

CHAPTER 5 - Control Constructs 43
354

CRASH User's Manual

4) Continue with 1).

It is therefore possible that the loop will never be executed,
if the expression has an initially false value.

B.5 THE DO UNTIL

The DO UNTIL is used when a sequence of statements is to be
executed until some condition is true. The form is:

DO UNTIL expression;
body of group

END;

The DO UNTIL group is executed in the following manner:

1) The body of the group is executed
2) The expression is evaluated.
3) If the expression is true(LSB= 1), execution of

the group is terminated.
4) Continue with 1).

The DO UNTIL loop is always executed at least one time.

B.6 The DO CASE

The DO CASE is one of the most powerful programming tools
available in CRASH. With it, the user has the ability to perform
an n-way branch. The form is:

DO CASE expression;
statementO
statementl
• • •
statementn

END;

The value of the expression is evaluated. If the value is zero,
statementO is executed. If the value is n, statementn is
executed. The expression must be integer in type. If the value
of the expression is less than zero or greater than "n", no
statement in the group is executed.

C. Identifiers and DOs

The DO statement can be labelled like any other statement. The
form is:

label: DO ...

Where:
"label" is any unused identifier.

If a label is specified on the DO statement, it must also appear

44 CHAPTER 5 - Control Constructs
355

CRASH User's Manual

on the END for that group in the following way:

END label;

The advantages of labelling DOs are that each time an END with a
label is encountered, a check is made to see that no ENDs have
been left out, or that too many have been used. This is very
helpful for the inexperienced user who will be apt to mismatch
DO-ENDs, especially if the code is not indented to show the
beginning and end of the groups.

D. EXIT and NEXT DO

It is often desirable to be able to exit from a DO group before
its normal completion. When this is the case, the following
statement can be used:

EXIT DO;
EXIT DO label;

Execution of this statement will cause control to be transferred
to the first statement after the END of the current DO group if
no "label" was specified. If a "label" was specified, control is
transferred to the first statement after the END of the labelled
DO group.

Sometimes it is convenient to terminate a particular iteration
of a DO group, and continue with the next iteration. In this
case, the statement:

NEXT DO;
NEXT DO label;

can be used. When this statement is executed, control continues
as if the END statement for the DO group had been there. If the
condition for executing the DO group is still satisfied, the
next iteration is performed in the usual manner. If a "label"
was specified on the NEXT DO statement, the next iteration of
the labelled DO group is started.

Note that the EXIT DO and NEXT DO statements can be used to
eliminate GO TO statements from a structured program. They are
not, however, a substitute for good structured code using only
the above DO constructs and the IF...THEN statement (discussed
later).

Examples:

An example of iterated DO is to sum the integers from 1 to 10.

SUM = 0;
SIJM_IT: DO I = 1 to 10;

SUM = SUM + I;
END SUM IT;

CHAPTER 5 - Control Constructs 45
356

CRASH User's Manual

This time, only even integers are to be summed:

SUM = 0;
SUM_EVEN: DO I = 2 TO 10 BY 2;

SUM = SUM + I;
END SUM_EVEN;

A chemical is being titrated with an indicator which changes
color depending on the pH of the solution. A sensor is set up
which determines the color of the solution and sends this data
as an integer specifying one of five colors to the computer. It
is the computers job to control the valves which allow more acid
or base to be mixed with the chemical. The following DO CASE
might be used to decide what action is to be performed based on
the color of the solution:

TITRATE: DO CASE SOLUTION_COLOR;

/* CASE 0 */
/* ADD ACID AT FAST RATE */
CALL ADD_ACID(1);

/* CASE 1 */
/* ADD ACID AT SLOW RATE */
CALL ADD_ACID(0) ;

/* CASE 2 */
/* ALL DONE */
DO;

/* TURN OFF FLOW IF NECESSARY */
IF ACID_IS_0N THEN

CALL ST0P_ACID;
ELSE IF BASE ISJDN THEN

CALL ST0P~BASE;
END;

/* CASE 3 */
/* ADD BASE AT SLOW RATE */
CALL ADD_BASE(0);

/* CASE 4 */
/* ADD BASE AT FAST RATE */
CALL ADD_BASE(1);

END TITRATE; /* DO CASE */

Some data are being computed using the prime numbers from one to
thirty. A stepped DO can be used to do this efficiently:

DO PRIME = 1,3,5,7,11,13,17,19,23,29;
VAL = VAL + (2 * PRIME);

END;

46 CHAPTER 5 - Control Constructs
357

CRASH User's Manual

5.2 IF...THEN and IF...THEN...ELSE

General Description

There are two forms of the IF statement in CRASH. The
IF...THEN statement allows conditional execution of a CRASH
statement. The IF...THEN...ELSE is the same except that an
alternate statement is executed if the condition is not met.

Precise Description

A. IF...THEN

The syntax of the basic IF statement is:

IF exp THEN statement

Where :
"exp" is any CRASH expression which can be evaluated and

converted (if necessary) to a Boolean (True/False) value (see
section 7.3).

"statement" is any single CRASH statement. A group of
statements can be used if they are enclosed by DO;...END; (see
section 5.1).

The expression is evaluated. If the value is true (least
significant bit=l) the "statement" is executed.

Examples:

IF PWRON & ((DANGER_CONDS & DMASK) = 0) THEN
CALL STARTJJP;

IF STOCK > DEMAND THEN
PRICE = LOW_PRICE(ITEM);

B. IF...THEN...ELSE

The ELSE clause allows alternate action to be taken if the
condition is not met. The syntax is:

IF exp THEN basic statement
ELSE statement

Where :
"exp" is any CRASH expression which can have a boolean value.
"basic statement" is any CRASH statement except a scheduling

statement or another IF statement.
"statement" is any CRASH statement.

The expression is evaluated and converted to a Boolean type if
necessary. The least significant bit is tested and if true the
basic statement is executed. If the value is false, the
statement is executed. One and only one of the statements is

CHAPTER 5 - Control Constructs 47
358

CRASH User's Manual

executed.

The requirement that a basic statement follow the THEN is to
avoid ambiguity in CRASH. Any statement can be made basic by
imbedding it in DO,-...END;.

Examples

IF (STATUS & SMASK) = 3 THEN
ESTAT = TRUE;

ELSE ESTAT = FALSE;

IF COMMAND = 'YES' THEN
YES: DO;

• • •
END YES;

ELSE
NO: DO;

/* LEAVE OUT DETAILS */

/* MORE DETAILS */
END NO;

C. Nesting IF Statements

If the
statement
must be
syntactic
control
use a con
If indent
easier t
flow of c
program,
syntactic
intended

statement following
, the conditional st

exercised when
ally correct stateme
flow. One way to min
sistent form of inde
ing is used uniforml
ime constructing th
ontrol more readily

Consider the f
ally correct but pro
because of incorrect

IF exp THEN
IF exp THEN

s
ELSE

IP exp THEN
s

ELSE
s

the THEN or
atement is said

using nested
nts may not p
imize the possi
nting throughou
y, the programm
e flow of contr
apparent during
ollowing IF
bably won't wor
indenting.

ELSE is another IF
to be nested. Care
IF statements as

erform the desired
bility of this is to
t the CRASH program.
er will have a much
ol and will make the
the testing of the
statement. It is

k the way it was

Simply indenting control statements will not change the flow of
control (that is determined by the syntax only) but it will help
in understanding the flow of control. The rule to use is that an
ELSE belongs with the last preceding IF statement which does not
have an ELSE. So in the above example, the ELSE which looks like
it belongs with exp really belongs with the IF on exp. A
correct way to indent these statements is:

48 CHAPTER 5 - Control Constructs
359

CRASH User's Manual

Examplesi

IF exp THEN
IF exp THEN

s
ELSE

IF exp THEN
s

ELSE
s

IF NUM > 7 THEN
IF ITEM <= BIGITEM THEN

BOX = BIG;
ELSE

BOX = CRATE;

5.3 GOTO And GO TO

General Description

The GO TO statement is used to transfer control, either
conditionally or unconditionally, to another segment of the
program.

Precise Description

A. Transfer of Control

Any CRASH statement can be labelled with an identifier in the
following way:

label: statement

Where:
"label" is any unused identifier.

The GO TO statement has the following forms:

GOTO label;
GO TO label;

Execution of a GO TO will cause a jump or branch to the
statement labelled with "label". This statement will be the next
statement to be executed.

A GO TO can be made conditional by using it with an IF
statement:

IF expression THEN GO TO label;

If the expression has a true value, control is transferred to
the statement with "label".

CHAPTER 5 - Control Constructs 49
360

CRASH User's Manual

B. Restrictions on use

GO TO statements should not be used to jump into the middle of
an iterated DO group or to jump into another procedure. Unless
the internal workings of CRASH are known to the programmer the
results can be unpredictable, and will likely result in a non-
functioning program.

The GO TO is not considered to be a structured programming tool.
In almost every situation, the GO TO can be eliminated by
thoughtful use of the other control constructs described so far.

There are many reasons why the GO TO should not be used.
Structured programs read from top to bottom. If GO TOs are used,
very often the reader will find himself flipping back and forth
through a long listing trying to find out "Where do I go from
here?". Another reason is that GO TOs get in the way of any
formal attempt at proving the "correctness" of a program.

Several studies have been undertaken . to determine the
productivity of programmers using a structured programming
language versus an unstructured language such as FORTRAN. Rough
figures indicate that two to three times as many debugged
statements per day can be produced using a structured language.
According to Yourdon:

Though no experimental evidence has yet been
gathered, there is good reason to believe that the
increase in productivity will be even higher in the
area of real time systems (operating systems,
process control systems, etc.) than with the non-
real-time application programs.

GO TOs should only be used when the structured approach is even
more awkward and confusing, or if it will clearly use a good
deal less memory or execution time and still be understandable
to someone else.

Examples;

A reasonable use of the GO TO is to avoid duplication of a
small group of statements.

Yourdon, Edward, Techniques of Program Structure and Design,
Prentice-Hall

50 CHAPTER 5 - Control Constructs

361

CRASH User's Manual

CONTROL: DO CASE KNUM;

/* CASE 0 */
GO TO SHUTJXDWN;

/* CASE 1 */
SHUT_DOWN:

DC-
CALL SAVE_STATUS;
CALL POWEROFF;
OUTPUT = 'POWER HAS BEEN SHUT OFF';

END' SHUT_DOWN;

/* CASE 2 */
CALL INIT;

END CONTROL; /* DO CASE */

CHAPTER 5 - Control Constructs 51
362

CRASH User's Manual

CHAPTER 6 - TASKING AND TIMING

Introduction

It is sometimes desirable to have many different activities
take place concurrently within the computer. Normal procedure
calls cause suspension of the calling program until the called
program has RETURNed. CRASH allows the possibility of having
several procedures active at one time, without requiring the
completion of one before another can execute. Such procedures,
which can 'live' independently of other procedures, are called
tasks.

There are a variety of ways a task can be scheduled to
execute. It can be synchronized with the clock, with the
procedure which first invoked it, or with some other procedure.
It may even be scheduled to execute asynchronously (triggered by
some external event or I/O completion).

Besides having a scheduling attribute, a task also has an
attached attribute called its priority, which specifies its
importance and timing requirements in the collection of programs
being executed.

The six basic scheduling statements which are a part of the
CRASH language are:

AT <time> START <task>;
IN <time> START <task>;
EVERY <time> START <task>;
ON <condition> START <task>;
START <task>;
CANCEL <task>;

The meaning and use of the above statements is discussed in
the following sections.

6.1 Timing

General Description

Since a task may be scheduled to start with certain timing
constraints, there must be a way to specify these constraints in
a CRASH program.

Precise Description

A time may be specified in several different ways: minutes,
seconds, milliseconds (thousandths of a second) or in 100-
microsecond units (millionths of a second). The number of units
of time specified may be stated as a constant (INTEGER or REAL)
or as a variable. If the number of units is stated as a
variable, this variable must not be an array element, an element

CHAPTER 6 - Tasking and Timing 53
363

CRASH User's Manual

of a delay variable (ANALOG or DISCRETE), nor the value of a
function invocation.

Examples;

The following are all legal ways of specifying a time.

3 MIN (3 minutes)
5.25 SEC (5.25 seconds)
XYZ MSEC (variable number of milliseconds)
UK (variable number of 100-usec units)

The following are all illegal attempts to specify a time.

'3' MIN (units cannot be character valued)
3 MINUTES (MIN is the proper way to specify the

magnitude)
XYZ SECONDS (SEC is the proper way to specify the

magnitude)
UK(3) MSEC (Array elements are not permissible unit

specifications)
SIN(PI) (Function invocations are not

permissible unit specifications)

In the discussion that follows, the symbol <time> will be
used to denote a legal timing specification.

6.2 Declaring A Task

General Description

A task is declared in CRASH just like an external procedure
except that it is preceded by the word TASK instead of the word
ROUTINE in the type specification for the procedure.

Precise Description

Every task must be declared in a scope which surrounds the
statement(s) in which it is refered to. In the declaration
section the statement:

TASK TNAME;

must appear if TNAME is to be referred to within that scope.
This means that TNAME must be declared in the current level
procedure, or a procedure on a lower level which contains the
current procedure.

54 CHAPTER 6 - Tasking and Timing 364

CRASH User's Manual

6.3 Defining A Task

General Description

A Task is defined in CRASH just like an external procedure
except that it may not have any parameters and must be declared
slightly differently in the procedure heading.

Precise Description

A task is defined by writing:

TNAME: PROCEDURE TASK;

... procedure body;

END TNAME;

6.4 Task Identifiers

General Description

In order to refer to a currently executing task, it is
necessary to keep a unique name for every invocation of a task.
Task Identifiers are variables to which are assigned such unique
names.

Precise Description

The same procedure may be scheduled to execute several
times from within a system of programs. Just giving the name of
the procedure which is to execute, therefore, does not uniquely
specify which invocation of the task is meant when it is
referred to. To alleviate this problem, whenever a task is
scheduled, a variable must be surrounded by parenthesis and
appended to the task name. The scheduler will return a unique
identifier for that particular invocation. In CRASH, this is
done by saying TASKNAME(variable) . The reasons why a previously
invoked task might have to be referred to will become clearer in
later sections.

The task identifier for the MAIN procedure is a pre-defined
integer variable MAINID.

6.5 Priority

General Description

Every invocation of a task must specify a priority with
which the invocation should be completed. The higher the
priority in relation to other tasks currently executing, the
sooner the newly invoked task will be completed.

CHAPTER 6 - Tasking and Timing 55
365

CRASH User's Manual

Precise Description

A priority specification is an integer value between 1 and
250. It may be specified as either a constant or a variable. If
it is specified as a variable, it must not be an array element,
element of a delay variable, sub-unit of a variable, MAP
variable, or a function invocation. The task that is invoked is
entered into the collection of tasks competing for execution.
Since only one task invocation may proceed at any time, the one
which is selected to proceed is the one with the highest
priority. If a task with a lower priority than the one which has
just been invoked has been proceeding, it is pre-empted until
the higher priority task has completed execution. There is no
time slicing or sharing done by the operating system scheduler
during I/O waiting. The highest priority task which is in
competition for CPU time will run to completion before a lower
priority task can proceed.

The MAIN procedure and any subroutines or functions it
calls run with a priority of 10 (see the OSWIT Users Manual).

Examples:

The following are examples of specifying a task and its
priori ty.

Example:
TNAME(X) PRI0(2)
TNAME(QSL) PRIO(I)

Given tasks Tl, T2, and T3, with priorities 10, 20, and 30
respectively, and supposing that T3 is currently proceeding in
execution, the invocation of task T4 will cause the sequence of
task completions to be as follows (assuming no other tasks are
invoked).

Example:
T4 PRIO(50) : T4, T3, T2, Tl

T4 PRIO(30) : T3, T4, T2, Tl

T4 PRIO(25) : T3, T4, T2, Tl

6.6 Scheduling A Task

General Description

A task is scheduled to execute by a special statement
called a Scheduling statement. Every time a task is mentioned in
one of these scheduling statements, a new invocation of the task
is scheduled (Thus it is possible to have a procedure executing
concurrently with itself).

If this is done, however, care must be taken to make the task
re-entrant and use all automatic variables in the task.

56 CHAPTER 6 - Tasking and Timing
366

CRASH User's Manual

Precise Description

A. AT

A task may be scheduled to start at a certain time:

AT <time> START TNAME(I) PRIO(IO);

In this case <time> refers to the number of milliseconds,
seconds, or minutes after midnight.

B. IN

It may be scheduled to start at a certain time increment from
the instant at which it was scheduled:

IN <time> START TNAME(ID) PRIO(J);

C. EVERY

It may be scheduled to start periodically:

EVERY <time> START TNAME(Z) PRIO(I);

D. ON

It may even be scheduled to start execution upon the occurrence
of some event (called a condition) which occurred externally to
the procedure which is scheduling it:

ON <condition> START TNAME(ID) PRI0(75);

Such external conditions will be discussed in sections 6.8 and
8.5.

E. START

A task may simply be put into the queue of tasks competing for
execution immediately:

START TNAME(ID) PRI0(116);

Examples:

To start a task at 3 minutes (on the computer's clock) past
midnight

Example:
AT 3 MIN START BLOW_WHISTLE(ID1) PRIO(IO);

To start a task in X seconds from now
Example:

IN X SEC START APPLY_BRAKES(ID2) PRI0(19);

To start a task every 15 milliseconds

CHAPTER 6 - Tasking and Timing 57
367

CRASH User's Manual

Example:
EVERY 15 MSEC START CHECK_LEVEL(ID3) PRI0(12);

To start a task upon the occurrence of an interrupt from a
logical device

Example:
ON INTERRUPT_A(LDN) START CHECK_SWITCHES(K) PRIO(95);

To start a task immediately:
Example:

START SAMPLE_STARTER(ID4) PRIO(129);

6.7 Cancelling A Task

General Description

A task may be cancelled if its purpose has been fulfilled
and is no longer required.

Precise Description

The following scheduling statement

CANCEL TNAME(variable);

will cause the task to be cancelled. If the task is currently
proceeding or has been pre-empted by another higher priority
task during its execution, it will be allowed to complete its
execution. If, however, it has not yet begun execution, it will
be cancelled before and never be allowed to proceed. If it is
desired to re-schedule the task, that is permitted, but it will
occur as if it had never been scheduled before.

All tasks should be cancelled when they are no longer
needed. Each task that has been scheduled requires that a
special block of storage be maintained by the scheduler which
defines its priority, etc. There are a limited number of these
task control blocks available (specifically 255 with the OSWIT
scheduler).

Examples:

The following is a legal task cancellation
Example:

CANCEL TNAME(I);

The following is an illegal task cancellation since no task
identifier was specified.

Example:
CANCEL TNAME;

Operating System With Trains. Developed at the University of
Michigan.

58 CHAPTER 6 - Tasking and Timing
368

CRASH User's Manual

6.8 Conditions

General Description

This is the second section of the manual dealing with
conditions, the first appearing in the section on CONTROL
CONSTRUCTS. It should be emphasized that the two types of
conditions (those which cause the execution of a single CRASH
statement, and those which can cause the invocation of a task)
are essentially different (see section 8.5). The only conditions
discucsed here are those relating to input-output devices and
their (possibly) asynchronous behavior.

Precise Description

Two conditions which may cause a task to be invoked are
IO__RETURN and INTERRUPT. IO_RETURN occurs when an input-output
unit signals the computer that an I/O operation has completed on
a specified unit with a particular return code. Possible return
codes can be end-of-file, end-of-disk, • or successful I/O
completion. INTERRUPT can occur for a variety of reasons, and
those reasons vary from device to device. The possible INTERRUPT
reasons are dependant upon the device attached to the logical
unit. OSWIT users should consult the command description section
in the OSWIT manual.

A. 10 RETURN

When it is desired to start a task because of a particular
return code on one (or more than one) device, the statement:

ON I0_RETURN(rc,ldnl, ldn2, ... , Idni) START TNAME(ID) PP.10 (M);

should be used. The parenthesized list (Idnl, ldn2, ... , Idni)
is intended to represent a list of logical device names
corresponding to the actual input-output units. "re" is the
return code from an I/O operation which is to cause the task to
be invoked. The return codes which can occur on the various
devices are listed in the OSWIT users manual. Several macros
(see chapter 10) are available for the common re's (i.e.
ENDFILE, IO_SUCCESS, ENDDISK).

The IO_RETURN condition is an alternative to waiting for an
I/O operation to be completed. It can be used to allow
simultaneous I/O activity and processing.

B. INTERRUPT

Associated with each device are two possible interrupts, A and
B. When it is desired to start a task because of an INTERRUPT
condition on a device, the statements

ON INTERRUPT_A(ldn) START TNAME(ID) PRIO(M);

CHAPTER 5 - Tasking and Timing 59
369

CRASH User's Manual

ON INTERRUPT_B(ldn) START TNAME(ID) PRIO(M);

should be used. The OSWIT users manual specifies the possible
conditions and associated interrupts. The INTERRUPT condition is
typically used with devices that may be activated asynchronously
(i.e. a level sensor which triggers when the level of liquid in
a tank falls below a certain level).

Examples:

ON I0_RETURN(4,SCARDS) START WRITEREPORT PRI0(1);
ON INTERRUPT_A(15) START TRIPSWITCH(X) PRI0(4);
ON INTERRUPT B(10) START UPDATE SPEED(IDl) PRIO{25)

60 CHAPTER 6 - Tasking and Timing
370

CRASH User's Manual

CHAPTER J - INPUT AND OUTPUT

Introduction

There are three forms of I/O supported by CRASH which
simplifies the problems encountered with more complicated format
structures. The first form discussed is used primarily for
communicating with the console device and human operators. A
second form is used to send and receive data from external
devices such as A/D and D/A converters. The third form is used
when doing record I/O with floppy disk files, MTS, the console,
or any device which supports record I/O.

Since CRASH runs in a real-time environment, most of the
I/O statements only start the I/O operation. Two methods are
provided to determine when an I/O operation is complete. The
wait statement simply suspends the currently executing task
until the operation is done. Alternately, an ON-condition can be
set up to start a task on a specified return code from the
operation. This enables the currently executing task to continue
executing during the I/O.

7.1 INPUT

General Description

The identifier INPUT is used to read character, integer and
real constants from SCARDS. In conjunction with the console
input buffer, each reference to INPUT will convert one constant
from SCARDS. SCARDS is defined as being logical unit 26 in the
OSWIT operating system.

Precise Description

INPUT is a pseudo-variable that may appear anywhere a
variable can, except that it may not be on the left side of an
assignment. Another restriction on the use of INPUT is that sub-
unit selectors cannot be used. Whenever INPUT is referenced a
constant (as defined in section 2.1) is read from SCARDS.
Several constants may be on each line, separated by commas
and/or one or more blanks. Initially the console input buffer is
empty. The first occurrence of INPUT will cause the user to be
prompted for a line of input. This line can have one or more
constants on it. The first constant will be used for this input.
The next time INPUT is used, the input buffer will be checked to
see if it is empty. If it is, another line will be read from
SCARDS. If the buffer is not empty, the next constant in the
buffer which hasn't yet been used will get used.

The type of constant that INPUT is expecting is determined

The Michigan Terminal System at the University of Michigan.

CHAPTER 7 - Input and Output 61
371

CRASH User's Manual

by the context around INPUT. If it appears in a concatenation or
a simple replacement of a character variable the value expected
will be a string constant. If INPUT appears in a simple integer
replacement, or in an integer arithmetic expression, an integer
constant will be expected. Otherwise, a real or integer value
can be used. Note that string constants are enclosed by primes
(section 2.ID). If the type of constant does not match the type
expected, or neither a blank or comma separates two constants
the user will be asked to reinput the line from the point of
error. INPUT is intended to be used conversationally from the
console device and automatically waits for the operation to be
completed.

Examples of legal uses of INPUT:
REAL_VARIABLE = INPUT;
INTEGER_VARIABLE = INPUT;
IF INPUT = 'STOP' THEN RETURN;

Example of illegal use of INPUT:
INPUT = ALPHA;

7.2 CARD

General Description

The identifier CARD is used to read a complete line from
SCARDS.

Precise Description

CARD is a character pseudo-variable which can appear
anywhere a variable can except the destination of an assignment.
Whenever CARD is referenced, a line is read from SCARDS and used
as the value of CARD. As with INPUT, CARD automatically waits
for the input operation to be completed. Note that CARD has no
effect on the console input buffer. Care must be taken with CARD
when it appears in a statement like the following:

CHARVAR = CARD;

If the length of the next line from SCARDS is longer than the
maximum specified for CHARVAR, part of the program may be
destroyed. Since the maximum length of an input line is 255, a
size of 255 will avoid trouble here.

Example:

COMMAND_LINE_BUFFER = CARD;

62 CHAPTER 7 - Input and Output 372

CRASH User's Manual

7.3 OUTPUT

General Description

The identifier OUTPUT is used to write a line to SPRINT.
SPRINT is defined as logical unit 28 under the OSWIT operating
system.

Precise Description

OUTPUT behave
except that it mu
Substring assignme
from numerical
applied. Integer v
take up an eleven
are included if
whole field is not
time an assignme
SPRINT.

s exactly like a
st always be the
nt cannot be per
types to chara
ariables require
character field,
the number ta
needed, blanks

nt is made to

simple character variable,
destination of an assignment.
formed on OUTPUT. Conversions
cter form are automatically
a six character field, reals
No leading or trailing blanks
kes up the whole field. If the
are padded on the left. Each

OUTPUT, a line is written on

OUTPUT only queues the line for printing
allows processing to continue during an ou
some point before the program terminates a WAI
be executed to make sure all output has
important consideration when using OUTPUT is
space available from the operating system. If
has been queued (OUTPUTing without WAITing) th
may run out of buffers. This error is
generally occurs only when SPRINT is assigned
device (the default) since it is a slow dev
queue up rapidly for it.

on SPR
tput ope
T statem
stopped

the limi
too mu

e operat
usually

to th
ice and

INT. This
ration. At
ent should

Another
ted buffer
ch output
ing system
fatal, but
e console
output can

Examples of legal uses of OUTPUT:
OUTPUT = INTEGER_VARIABLE;
OUTPUT = 'ENGINE ' || ENGINE_NUM || ' HAS DERAILED';
OUTPUT = REAL_VARIABLE;

Examples of illegal uses of OUTPUT:
ALPHA = OUTPUT;
INPUT = OUTPUT;
OUTPUT[0,5] = BETA;

7.4 GET

General Description

The GET statement is used to input data from an external
device.

373 CHAPTER 7 - Input and Output 63

CRASH User's Manual

Precise Description

The GET statement has the following form:

GET varlist;

Where:
"var-iist" refers to either a single variable, or a list of

variables separated by commas. The variables must be either
DISCRETE or ANALOG variables, and must have at least an LDN
specified in their declarations. Depending on whether WORD or
BYTE was specified in the declarations, an 8 or 16 bit value is
read from the specified LDN.

The GET statement automatically waits for the input to
complete.

A. Analog Real

The value read is converted to real, divided by the scale
factor, and the offset subtracted. The equation for this
operation is:

VALUE = (INVAL / SCALE) - OFFSET.

If a DELAY has been specified for this variable, the value
becomes the new current element.

Example:
GET SERVO_POSITION;
GET CAR_VEL,THROTTLE;

B. Analog Integer

Identical to analog real except the value is converted back to a
16-bit integer before it is stored.

Example:
GET VOICE_SAMPLE;

C. Discrete

The value is stored as the new current element. No scale or
offset are applied.

GET PHOTOCELL STATUS;

64 CHAPTER 7 - Input and Output 374

CRASH User's Manual

7.5 PUT

General Description

The PUT statement is used to write data to external devices
other than the console.

Precise Description
t

The PUT statement has the following form:

PUT varlist;

Where: "varlist" refers to a single variable, or a list of
variables separated by commas. The variables must be either
DISCRETE or ANALOG variables, and must have at least an LDN
specified in their declarations. The final quantity written on
the LDN is either an 8 or 16 bit integer, depending upon whether
the BYTE or WORD attribute was specified.

The PUT statement only initiates an output operation. A
WAIT must be executed (see section 7.8) if the output must
finish before further execution of the current task can occur.

A. Analog Real

The offset is added to the variable. This value is then
multiplied by the scale factor. The result is converted to an 8
or 16 bit integer before being written on the LDN. The equation
for this operation is:

OUTVAL = SCALE * (VALUE + OFFSET)

If the output value is less than the low clamp value or greater
than the high clamp value after scaling and offseting, the value
is clamped at the minimum or maximum value respectively.

Example:
PUT IDLE_MIXTURE;

B. Analog Integer

The value of the variable is converted to real. The offset value
is then added, and it is multiplied by the scale factor. The
resulting value is converted back to an 8 or 16 bit integer and
written on the LDN. The value is clamped if necessary as in A
above.

Example:
PUT FUEL_VEL,AIR_VEL;

CHAPTER 7 - Input and Output 65
375

CRASH User's Manual

C. Discrete

The value is directly output to the LDN as an 8 or 16 bit
integer.

Example:
PUT SWITCH_SETTINGS;

7.6 GET RECORD

General Description

A record is a sequence of bytes which are handled as a
unit. It is usually much more efficient for a processor to
handle many bytes at once during an I/O operation to record
oriented devices such as the console or floppy disk.

The GET RECORD statement is used to do record I/O with data
or character strings. It can be used with arrays or delay
variables.

Precise Description

GET RECORD is used to transfer many bytes of data to a
CRASH delay variable, array, or character variable in an
efficient manner. The syntax is:

GET RECORD(ldn) varlist;

Where:
"Idn" is the Idn for the I/O operation.
"varlist" is a list of delay variables, scalar character

variables, and/or arrays. Up to 255 bytes (127 words) may be
transferred to the variable's storage area starting with the
first element location. No conversions are performed; the data
are simply copied byte by byte into the array, character
variable, or delay variable from the specified Idn. Only the
first 255 bytes of a variable can be filled with the GET RECORD
statement. The actual amount of data transferred is dependant
upon which record is read.

The GET RECORD statement initiates an input operation on
the specified logical unit. Either a WAIT statement (see section
7.8) or an IO_RETURN ON condition can be used to determine when
the operation has finished.

When GET RECORD is used with a delay variable, the circular
list structure is filled beginning with the first storage
location. Byte by byte the data are transferred to the circular
list structure in order until the record is exhausted. The
current element pointer is set to point to the last complete
word transferred to the delay variable. In this way previously
stored data (on a floppy disk, for example) can be loaded into a
delay variable with a single statement.

66 CHAPTER 7 - Input and Output
376

CRASH User's Manual

Examples

GET RECORD(10) DATA_ARRAY;
GET RECORD(ll) FLOPPY BUF;

7.7 PUT RECORD

General Description

The PUT RECORD statement is used to do record output with
data or character strings. It can be used with arrays, delay
variables, or character variables.

Precise Description

PUT RECORD is used to transfer large amounts of data from a
CRASH delay variable, character variable, or array to an output
device such as a floppy disk for buffering. The transfer is made
byte by byte without conversion and is a fast way to move data
under the constraints of a real-time system. The syntax is:

PUT RECORD(ldn) varlist;

Where :
"Idn" is the logical device number to use for output
"varlist" is a list of delay variables, scalar character

variables, and/or arrays to output to the Idn. For each variable
in the list, a record is written to the specified LDN.

The length of the record written is dependent upon the
variable to be PUT. For arrays, the length is the number of
bytes in the array, or 255, whichever is smaller. For character
variables the length is the current length of the variable. For
delay variables, the length is the number of bytes from the
first storage location for the circular list to the current
element pointer. In addition, for delay variables only, after
the PUT RECORD the current element pointer is reset to the first
storage location in the circular list. The PUT RECORD, GET
RECORD and DELAYFULL constructs can be used to "fill" and
"empty" a delay variable in a data acquisition application (see
section 8.5).

The PUT RECORD statement queues output for the logical
unit. Either a WAIT statement (see section 7.8) or an I0_RETURN
condition (see section 6.8) can be used to determine when the
output is completed.

Examples:

PUT RECORD(5) TEMPERATURE_DATA;
PUT REC0RD(6) HORIZ MOTION,VERT MOTION;

CHAPTER 7 - Input and Output 67
377

CRASH User's Manual

7.8 Waiting For I/O Completion

General Description

I/O operations typically take a long time as far as the CPU
is concerned. Therefore, some CRASH I/O statements only initiate
I/O operations. It is sometimes necessary, especially on input,
to wait for an I/O operation to be completed before continuing
execution of the current task. The WAIT statement does this.

Precise Description

The WAIT statement causes suspension of the current task
until an I/O return occurs from a device. The syntax is:

WAIT FOR ldn,ldn,ldn,... ;

Where:
"Idn" is a logical device number to wait for.

When a return occurs from any of the specified Idn's, execution
of the task continues. The predefined variable "RETURNCODE" will
contain the return code from the device which finished.
"UNITNUMBER" is a predefined variable containing the logical
unit number of the device which finished.

INPUT, CARD, and GET do an implicit WAIT, no WAIT statement
is needed after them to insure the I/O has finished. OUTPUT,
PUT, PUT RECORD, and GET RECORD do not wait. If these operations
must be complete before the task can proceed, a WAIT must be
issued. Another possibility is to use an ON-condition (see
section 5.8).

Examples

WAIT FOR SCARDS; /* SCARDS = 26 */
WAIT FOR 10,11,12;

68 CHAPTER 7 - Input and Output 378

CRASH User's Manual

CHAPTER- 8 - -ARRAYS AND DELAY VARIABLES

Introduction

An ari:'ay is a set 0f several elements which are named by a
common identifier. To further specify an individual element, a
subscript is specified after the identifier.

When a fixed number of past values (history) of a variable
need to be kept (as in many control algorithms), a delay
variable can be used. Several applications of delay variables
have already been described in chapter 1.

8.1 Subscripted Variables

General Description

A subscript is used to specify an individual element in an
array.

Precise Description

A subscripted variable refers to a particular value in an
integer, bit, real, or character array. See chapter 2 for a
description of how an array's dimensions and type are declared.
The syntax of a subscripted variable is as follows:

name(subl,sub2,...,subn)

Where :
"name" is the identifier which refers to the array as a

whole.
"subl,sub2,...,subn" is the list of subscripts which refer to

the specific element in the array. The "sub"s must be in one-to-
one correspondence with the "dim"s specified when the array was
declared. If the number does not agree, an error will occur. The
"sub"s may be any integer or bit constant, variable, expression,
or value returned by a function. If the value is real, it will
be converted to integer using a truncating conversion.

A subscripted variable is treated like almost any other
scalar variable. Exceptions are that it may not specify a
<time>, priority, delay element, task identifier, or field
description. A temporary assignment to a scalar variable can be
used in these cases.

Examples;

TRACK = LAYOUT(PHOTOCELL_NUMBER);
POSITION(SAMPLE_NUMBER) = SAMPLED VALUE;
IF MATRIX33(1,1) = 0 THEN CALL PIVOT;

CHAPTER 8 - Arrays and Delay Variables 69
379

CRASH User's Manual

8.2 Using Lists

General Description

A list or vector is an array of singly-subscripted
variables.

Precise Description

A list has just one subscript which specifies the position
on the list:

VEC(l)

VEC(2)

VEC(3)

VEC(n)

Examples :

Consider the following problem: A subroutine is to be
written which will compare an input string with several constant
strings and return an integer specifying which string matched,
or zero if no match was found. One possible way of doing this is
a sequence of "IF" statements:

IF INBUF = 'PANIC THEN RETURN (1);
IF INBUF = 'LIGHTS' THEN RETURN (2);

IF INBUF = 'START' THEN RETURN (9);
ELSE RETURN (0);

This method is awkward at best, and will require a lot of
storage if many commands are to be implemented.

A more elegant method of writing the program is possible
using a list. This method will produce much less object code.

70 CHAPTER 8 - Arrays and Delay Variables

380

CRASH User's Manual

COM_FIND: PROCEDURE(INBUF);
/* SUBROUTINE TO FIND COMMAND */

CHARACTER(*) INBUF; /* THE COMMAND THAT WAS INPUT */
CHARACTER(6) COMMANDS(1:3) STATIC

INITIAL (' PANIC , ' LIGHTS ' , ' START ') ;
INTEGER INDEX;

/* SEARCH LIST OF COMMANDS */

DO INDEX = 1 TO 3;
IF COMMANDS(INDEX) = INBUF THEN

RETURN INDEX;
END;

/* COMMAND NOT IN LIST */

RETURN (0);
END COM_FIND;

As a final example of the use of lists, suppose that
several hundred values of data are taken. A one dimensional
array of the values is kept. It is desired that the smallest and
largest values be found, and the mean computed. Using a list
this is easily programmed and is fairly efficient.

PROCESS_DATA: PROCEDURE(MEAN,SMALL,LARGE,DATA,NUM);

/* FIND SMALLEST VALUE, LARGEST VALUE AND MEAN OF VALUES IN
"DATA" */

REAL (MEAN,SMALL,LARG E) ;
REAL DATA(*);
REAL SUM;
INTEGER (NUM,I);

/* INITIALIZE THE VARIABLES */

SMALL = (10**38) ;
LARGE = -(10**38);
SUM = 0.0;

/* NOW PROCESS THE DATA ONE AT A TIME */

DO I = 1 TO NUM;
IF DATA(I) < SMALL THEN

SMALL = DATA(I);
IF DATA(I) > LARGE THEN

LARGE = DATA(I);
SUM = SUM + DATA(I);

END;
MEAN = SUM / NUM;

END PROCESS DATA;

CHAPTER 8 - Arrays and Delay Variables 71
381

CRASH User's Manual

8.3 Tables, Matricies, And Multiple Subscripts

General Description

A doubly subscripted array is called a table or matrix.
When needed, three or more subscripts may be used.

Precise Description

With a table, the first subscript specifies the row, and
the second subscript specifies the column;

TABL(1,1)

TABL(2,1)

TABL(3,1)

TABL(1,2)

TABL(2,2)

TABL(3,2)

TABL(1,3)

TABL(2,3)

TABL(3,3)

Examples:

The following program will print the contents of a table in
a format like the matrix above.

PRINT_MATRIX: PROCEDURE(ROWS,COLUMNS,MATRIX);

/* PRINT THE CONTENTS OF A MATRIX DIMENSIONED AS: (1:R0WS,
1:C0LUMNS) */

INTEGER (ROWS,COLUMNS,I,J);
REAL MATRIX(*,*);
CHARACTER(120) BUFFER;

DO I = 1 TO ROWS; /* FOR EACH ROW */
BUFFER = 'I ';
DO J = 1 TO COLUMNS;

BUFFER = BUFFER II MATRIX(I,J) II '
END;
BUFFER = BUFFER M 'I1;
OUTPUT = BUFFER;

END;

END PRINT MATRIX;

•

72 CHAPTER 8 - Arrays and Delay Variables
382

CRASH User's Manual

8.4 Matrix Operations

General Description

Matrix operations are not yet supported by the CRASH
language, but a set of subroutines are available. See chapter
11.

8.5 Delay Variables

General Description

A delay variable is a means of creating a circular list
data structure. Delay variables provide a means to refer to
previous values of a variable. This is necessary when, for
example, the derivative with respect to time is needed to
calculate the control to be applied to a system.

Precise Description

Delay variables must have the ANALOG or DISCRETE attribute
specified in their declarations. The DELAY attribute specifies
the number of past values to be kept. See chapter 2 for more
details on declaring delay variables.

A. Referencing a Delay variable

A reference to a delay variable can be made in two ways. If just
the name of the variable appears, the current (most recently
assigned) value is used. If a previous value is to be
referenced, the following form should be used:

delayvar @ amount

Where:
"delayvar" is the name of the delay variable.
"amount" is an integer constant or variable which specifies

the amount of delay from the current value. "@0" is the current
element, "@1" is the previous value.

B. Assignment to £ delay variable

A circular list structure is created for each delay variable.
The most recently assigned value is the current head of the
list. Values can be assigned using an assignment statement
(chapter 7) or the GET statement (chapter 7).

C. Using £ Delay Variable for Data Acquisition and buffering

In addition to the circular list structure, a delay variable can
be used to efficiently block data items into a larger record for
data acquisition applications. Whenever a delay variable is
created and after a PUT RECORD the variable is "empty". The
number of values the variable can hold is specified with the

CHAPTER 8 - Arrays and Delay Variables 73
383

CRASH User's Manual

DELAY attribute in the declarations. After "delay1* assignments
or GET's to the variable it will be "full" (i.e.,the next
assignment to the variable will wipe out the oldest value in the
circular list). An ON-condition is provided which will be
triggered when this wraparound point is reached. The syntax is:

ON DELAYFULL(varl,var2,...,varn) basic statement

Where :
"varl, var2,...,varn" are delay variables. Whenever one of

the variables "fills" the basic statement will be executed, and
then the processor will return to whatever it was doing before
the condition occured. Typically, the ON action would be to
empty the variable with a PUT RECORD statement.

Examples:

The following program does really nothing of use, but
illustrates the various ways of referencing delay variables.

DELAY_IT: PROCEDURE MAIN;
/* DELAY LINE PROGRAM */
/* VALUES WHICH ARE READ FROM A DEVICE APPEAR */
/* ON THE CONSOLE AS OUTPUT EIGHT SAMPLES LATER */

INTEGER DELAY_LINE ANALOG DELAY(8) LDN{1);
INTEGER I;

/* INITIALIZE THE DELAY LINE */

DO I = 0 TO 7;
DELAY_LINE@I = 0;

END;

/* THIS ALSO INITIALIZES THE DELAY LINE */

DO I = 0 TO 7;
DELAY_LINE = 0;

END;

/* NOW START DELAYING OUTPUT */

DO WHILE 1; /* DO IT FOREVER */
GET DELAY_LINE;
OUTPUT = DELAY_LINE@7;

END;

END DELAY_IT;

The DELAYFULL condition is used in the following program to
read data values and format them into 80 word records.

74 CHAPTER 8 - Arrays and Delay Variables
384

CRASH User's Manual

DATA_AK: PROCEDURE TASK;
/* Read 1024 samples. Format in 80 word buffer and output to
floppy disk file attached to unit 0 */

INTEGER SAMP DELAY(80) STATIC LDN(O);
ON DELAY_FULL(SAMP) PUT RECORD(0) SAMP;
INTEGER COUNT;
DO COUNT = 1 TO 10 24;

GET SAMP;
END;

END DATA_AK;

8.6 Subscript And Delay Checking

General Description

If desired, CRASH can perform run-time checking on the
subscripts of an array or the delay specification of a delay
variable whenever it is referenced. Normally, no checking is
performed, but checking can be turned on with the CHECK
statement.

Precise Description

The subscripts of an array must lie in the range specified
or assumed (by default) in the declarations for the array. If a
subscript is not in this range, an element may be referenced
which is not part of the array, or an incorrect element may be
referenced. If this occurs during an assignment, the program may
self destruct by changing itself inadvertently.

Likewise, the delay specified with a delay variable must
not be greater than the number of past values to be kept
(specified in the declarations for the delay variable) .

To warn the user of this occurrence, CRASH allows subscript
or delay checking to be automatically performed on selected
variables in an efficient manner at run-time. If an error
occurs, a default value of zero or the null string is used for
the variable (depending on type), and a specific statement is
executed (as described below).

A. CHECK

The CHECK statement is used to turn on subscript or delay
checking for an array or delay variable in the compiler. The
forms are:

CHECK SUBSCRIPTRANGE(var,var,var,.. .);

CHECK DELAYRANGE(var,var,var,.. .);

Where:
"var" is the name of the array or delay variable to be

CHECKed,

CHAPTER 8 - Arrays and Delay Variables 75
385

CRASH User's Manual

When a CHECK statement is encountered, code is emitted to
automatically use the default value when a reference is made out
of bounds. If no ON condition is set up for the variable at run-
time, CRASH automatically prints a warning message when a bad
reference is detected. The CHECK statement is not an executable
statement, but is a switch for the compiler.

B. IGNORE

The IGNORE statement is used to turn off subscript or delay
checking if it is no longer needed. The forms are:

IGNORE SUBSCRIPTRANGE(var,var,var,...);

IGNORE DELAYRANGE(var,var,var,...) ;

Where :
"var" is the name of the array or delay variable which no

longer needs to be CHECKed.

When an IGNORE statement is processed, code is no longer emitted
for the specified variables to check array and delay
specifications. This does not affect the run-time checking of
variables which were previously CHECKed. The IGNORE statement is
not an executable statement.

C. The ON-Condition

The ON condition has been previously introduced in chapter 5.
This section describes its use in specifying what action is to
be taken when a DELAYRANGE or SUBSCRIPTRANGE condition occurs.
The forms are:

ON SUBSCRIPTRANGE(var) action;

ON DELAYRANGE(var) action;

Where :
"var" specifies the array or delay variable which this ON

statement pertains to.
"action" is one of the following:

1) START taskname
2) basic statement

The use and invocation of tasks has already been described in
chapter 5.

ii

basic statement" is any single CRASH statement except an
IF" statement. If more than one statement must be performed, or

an IF statement must be used, they can be enclosed by DO; ...
END; to make it a basic statement.

When the ON statement is executed, it sets up the statement
to be executed when a reference out of bounds occurs with the

76 CHAPTER 8 - Arrays and Delay Variables

386

CRASH User's Manual

variable. When this happens, the basic statement is
and execution resumes at the point of interruption.

D. The REVERT Condition

executed,

The REVERT statement is used to cancel the execution of the
statement set up by the ON condition. The syntax is:

REVERT SUBSCRIPTRANGE(var,var,var,...);

REVERT DELAYRANGE(var,var,varf...) ;

Where:
"var" is a delay variable or array. The execution of a REVERT

statement cancels the action set up by the ON condition but the
default value will still be used in any out of range references
which were under the influence of a CHECK statement at compile
time. The REVERT statement only controls run-time actions.

Examples;

INTEGER BIG_ARRAY(1:500);
• • •
ON S UBSCRIPTRANG E(BIG_ARRAY)

OUTPUT = 'BAD SUBSCRIPT';
• • •
CHECK SUBSCRIPTRANGE(BIG_ARRAY);
OUTPUT = BIG_ARRAY(I);
IGNORE SUBSCRIPTRANGE(BIG ARRAY)

/* DECLARE THE ARRAY */
/* LEAVE OUT DETAILS */

/* WHAT TO DO ON */
/* SUBSCRIPT OUT OF RANGE */

/* MORE DETAILS */
/* TURN IT ON */

/* PRINT AN ELEMENT */
/* TURN IT OFF */

/* CONTINUE ... */

If the value of "I" in the assignment statement is less than
zero or greater than 500, the message BAD SUBSCRIPT is printed
on the console.

CHAPTER 8 - Arrays and Delay Variables 77
387

CRASH User's Manual

78 CHAPTER 8 - Arrays and Delay Variables
388

CRASH User's Manual

CHAPTER 9 - CRASH ON MTS

9.1 How To Run The CRASH Compiler

General Description

At the present time, using the CRASH compiler is a three
phase process. The compiler itself produces LSI-11 Assembly
code. This must in turn be assembled by the LSI-11 assembler
available on MTS. Finally, all object modules thus produced must
be linked together with the CRASH library to produce an absolute
load file which can be loaded on the LSI-11.

Precise Description

A. The Compilation Phase

The CRASH compiler is invoked by running the file K2AT:CRASH.
The source code to the compiler is read from SCARDS. If enabled
(see section 9.2 on Control Toggles below) a listing of the
source code, variable cross-reference, and execution statistics
are written on SPRINT. The assembly code is punched on SPUNCH.

Example:

RUN K2AT:CRASH SCARDS=MYPROG SPUNCH=LSI11C0DE SPRINT=MYLIST
T=3

B. The Assembly Phase

If no errors of a severe nature were detected in the first
phase, the LSI-11 code can be assembled. The *11ASR assembler is
available on MTS. It reads the source code produced by CRASH
through SCARDS. The object code produced is written on SPUNCH.
If specified, a listing is produced on SPRINT, most CRASH users
will not need this listing, however.

Example:
RUN *11ASR SCARDS=LSI11C0DE SPUNCH=OBJ.CODE T=3

C. The Linking Phase

The final step is to link together all of the external
procedures or modules and the necessary routines from the CRASH
library. The *LINK11 program available on MTS produces an
absolute load file which can be loaded on the LSI-11. There are
several commands used. For a complete description, CC Memo 286
should be consulted.

See The PDP-11 Assembler and Link-Editor; A User's Guide to
*11ASR and *LINK11, University of Michigan Computing Center Memo
286, 1973

CHAPTER 9 - CRASH on MTS 79
389

CRASH User's Manual

Example
#RUN *LINK11
SET @,0100
LINK OBJ.CODE
LINK OBJ.CODE2

Invoke linker
Starting address in hex,
Link all
the external

:LINK OBJ.CODEN
:LINK K2AT:CRASHLIB
:WRITE MYLOAD
:STOP

procedures.
Link the library routines,
Punch the load file.

D. The Combined Compiler and Assembler

A progr
errors
modules
particu
file, i
exist
program
compila
of fund
provisi
CRASH 1

am is
were
are

lar
t is
it i
grea
tions
s nee
on i
ibrar

availab
detect

then add
external
replaced
s added
tly ease
are bei

ded duri
s also
y to be

le which
ed, the
ed to or

proced
by the
to th

s the ha
ng perfo
ng progr
made t
linked.

invokes the c
n invokes the
replaced in a

ure (module)
new version. If
e file. This
ndling of objec
rmed, and there
am development
o allow the obj

ompiler,
assembler
specified
already e
the modu

feature o
t code wh
by reduce
(if used
ect code

and
. The
file

xists
le do
f the
en s
s the
prope
file

if no
object
If a

in the
es not
driver
eparate
amount

rly). A
and the

To use the driver program the following MTS command may
issued:

be

RUN K2AT:C SCARDS=MYPROG SPUNCH=OBJ.CODE SPRINT=MYLIST PAR=

The source code is read from SCARDS.
should be either empty, or conta
object modules will be added to the
replaced. The CRASH listing will
SCARDS, SPRINT, or SPUNCH is unassig
prompted for the files to be used (
carriage return is simply entered
prompted for a file name, the inf
assumed. If errors or severe errors
compilation phase, the assembler wi
noted below).

The file attached to SPUNCH
in CRASH object modules. New

file; old ones will be
be produced on SPRINT. If

ned, then the user will be
except as noted below). If a

when the user is being
inite wastebasket *DUMMY* is

are detected during the
11 not be invoked (except as

Several parameters may be specified in the PAR field to modify
the operation of the driver. The valid parameters are:

D or DEFAULT Use default files -CRASH.S, -CRASH.L,
-CRASH.P for SCARDS, SPUNCH,
and SPRINT if unassigned.

ASS or ASSEMBLE Assemble even if errors detected.

E or EMPTY Empty object and listing files before using.

80 CHAPTER 9 - CRASH on MTS
390

CRASH User's Manual

PE or PEMPTY Empty listing file before using.

OE or OEMPTY Empty object file before using.

L or LINK Link the object code with the CRASH library.
The linked code will be in -LINK. An octal load map will be
written to file -MAP.

CCODE Save emitted assembler code in file -CRASH###. Used
as compiler debugging aid.

AL or ALIST Produce assembler listing on SPRINT.

Optionally, the parameter may be preceded by "NO" to complement
the action of the parameter, however all parameters default to
NO.. .

Example: RUN K2AT:C SCARDS=PROG SPUNCH=OBJ SPRINT=-P PAR=PE,L

9.2 Control Toggles

General Description

Whenever a dollar sign ($) is scanned within a comment, the
immediate next character is taken as a control toggle character.
There are 256 control toggles one for each EBCDIC character.
Each toggle can be either "on" or "off". When the "$" is
scanned, one of two things happens depending on the toggle
character:

1) The corresponding toggle is complemented, if it was "on"
it is turned "off", if it was "off" it is turned "on".

2) A specified action is taken.

Precise Description

The currently available control toggles are:

C Check Syntax Only. The source code syntax is checked by
the CRASH parser. No object code is produced. Syntax checking is
useful for finding missing semicolons, ENDs, primes, etc. and
costs about one third the cost of running the compiler with code
emission turned on. (initially off)

D Generate Symbolic Debugger tables. Tables are generated
for each external procedure compiled with this toggle turned on,
allowing the use of the real time interactive debugger as an aid
in program development. The D2 toggle can be used whenever the
main program tables are not needed, but other external
procedures are to be debugged.

@ Automatic Listing Indenting. When enabled, the listing
is automatically indenting to show nesting levels with vertical
bars printed connecting DO;...END;'s. (initially off)

CHAPTER 9 - CRASH on MTS 81
391

CRASH User's Manual

K Token Dump. Names of tokens and values of constants are
dumped as encountered during scanning if this toggle is "on",
(initially "off")

L A listing of the source code is produced on SPRINT if
this toggle is "on", (initially "on")

N — Listing Control. When this toggle is encountered, the
immediate next character is output as carriage control before
the current line is printed. Thus, a page eject can be placed in
the CRASH listing by using $N1.

0 — SERCOM error printing. When enabled, error messages are
echoed on sercom as detected. This toggle is initially "on" when
in conversational (terminal) mode, initially "off" when in batch
mode.

P Partial Parse Dump (initially "on")

R Reduction Dump. Production numbers and productions are
dumped before each reduction takes place if this toggle is "on".
(initially "off")

X Variable Cross Reference Listing. The name, internal
name and references for each identifier are printed after each
external procedure, (initially on).

1 Print expanded macros. Prints the expansion of each
macro call on next line of SPRINT, (initially off);

2 Print macro definitions and other data on SERCOM.
Debugging aid only, (initially off).

3 Enable Macro Expansion. Allows the scanner to recognize
macro calls. Does not affect the processing of macro
definitions, (initially on).

E List the emitted code. Lists the code for each
statement after the statement on SPRINT, (initially off).

? Debug Breakpoint. If this toggle is "on", then every
time a question mark (?) is encountered within the source code,
procedure DEBUG is invoked. The general user of CRASH should not
use this toggle, as it is useful only for debugging the compiler
itself. For details on the use of DEBUG see file
W164:EXPLDEBUG.S (for the time being anyway...)

S Selective Debugging. When this toggle is encountered,
the user is prompted via GUSER for lists of production numbers
of the form:

ON=prd#,prd#,prd#,...
OFF=prd#,prd#,prd#,...
ALL
NONE

8 2 CHAPTER 9 - CRASH on MTS 39 2

CRASH User's Manual

Where prd# is either a single number (e.g. 10) or a range of
numbers (e.g. 10-20)

ALL does the same thing as "ON=l-256"
NONE does the same thing as "OFF=l-256"

DEBUG will then be called before and after each reduction
involving any of the productions listed.

In addition the following entries are legal:
RETURN or a null line to stop the prompting and resume

compilation
$_ (where "_" can be any character) . In this case the toggle

corresponding to the second character in the line is
complemented and its current state is printed out on SERCOM.

9«3 Including An MTS File In CRASH Source Code

General Description

The $INCLUDE command can be used to copy an MTS file into
the source stream of the compiler.

Precise Description

When several external procedures use a common set of GLOBAL
variables, they can be put in a separate file, and the $INCLUDE
command used to include them in each procedure. Or a common set
of macro definitions can be made up in a separate file if used
by more than one procedure. This eliminates the need to type in
identical declarations for several procedures. The $INCLUDE
command appears in a comment like a control toggle and has the
following form:

* $INCLUDE filename *

Where filename is the name of an MTS file to be included in the
source to CRASH. This statement is identical to the MTS command
$CONTINUE WITH filename RETURN appearing in column one except
that the $INCLUDE statement appears on the listing to document
the existence of the copied file.

Examples

/* $INCLUDE K2AT:CRASHMACLIB */
/* $INCLUDE GLOBAL.DEFS */

393 CHAPTER 9 - CRASH on MTS 83

CRASH User's Manual

34 CHAPTER 9 - CRASH on MTS 394

CRASH User's Manual

CHAPTER 10 - MACROS

Introduction

A macro is a line of text which is set aside during macro
definition and reintroduced into the input stream of the
compiler, possibly with modifications, by a macro call and
subsequent macro expansion. The macro definition is modified by
the optional use of an argument list with the macro call. All
macros must be defined before they are used, and CRASH allows up
to 100 macros to be defined. Macros are used internally by CRASH
to implement the MAP attribute.

10.1 Macro Definitions

General Description

A macro must be defined before it can be used. This is
usually done along with the declarations for the procedure. Once
a macro has been named and defined, any occurrence of that name
will cause the macro processor to be invoked, and the text
expanded (if the $3 toggle is enabled).

Precise Description

Macro definitions have the following syntax, and may occur
anywhere an identifier can occur.

MACRO name; text; MEND;

OR

MACRO name(parl,par2,...,parn); text; MEND;

Where name is any identifier, and text is any string not
containing "MEND;". The text may not be longer than 255
characters.

Examples;

A simple text substitution macro definition merely substitutes
the text for the name. This macro definition will cause every
occurrence of the identifier "FOREVER" to be replaced by "WHILE
1".

Example:
MACRO FOREVER;WHILE 1;MEND;

A more complicated macro definition allows argument substitution
in the text of the macro definition. The next section covers the
passing of arguments in a macro call. The macro definition below
will cause the identifier "DECLARE" to be replaced by "INTEGER
zzzzz" where zzzzz is the argument passed by the macro call.

395 CHAPTER 10 - Macros 85

CRASH User's Manual

Example:
MACRO DECLARE(VARIABLE);INTEGER VARIABLE;MEND;

The macro expansions can be turned on or off as below. The
control toggle $3 can also be used(Chapter 9), but the example
below shows the preferred method, since the state of things is
positively known with these two statements.

Example:
MACRO ON or MACRO OFF

10.2 Macro Calls And Text Expansion

General Description

A macro is invoked when the CRASH parser encounters an
identifier which has been defined by a previous "MACRO"
statement.

Precise Description

The syntax of a macro call is as follows:

name

OR

name(argl/arg2,...,argn)

The first type of call is invoked when just the macro name
appears in the input stream of the compiler. In this case, the
definition is simply copied into the input stream in place of
the name. If the optional argument list is included it is
required that the number of arguments specified in the argument
list be in one-to-one correspondence with the list of parameters
specified when the macro was defined. If too many arguments are
specified, a warning message is generated, and the extra ones
are ignored. For each occurrence of a parameter in the macro
definition, the corresponding argument is inserted instead. This
enables modification of the macro definition.

Examples:

A typical use for macros is to define an "infinite" DO- loop. In
the declarations of the program, the macro definition in example
one must appear. Later we could use the following statements to
form the infinite loop.

Example:
DO FOREVER; /* Expands into DO WHILE 1; */

• • • /* Leave out the details */
END; /* End of the infinite loop */

The Argument list enables one macro to do the work of several.

86 CHAPTER 10 - Macros 395

CRASH User's Manual

Example;
MACRO ARITH.(PAR1/PAR2) ; BIGNUM = PAR1 + PAR2 ; ;MEND;

. . . Later in the program ...
ARITH(LITTLE,MEDIUM + SMALL) /* EXPANDS INTO */

/* BIGNUM - LITTLE + MEDIUM + SMALL ; */

397 CHAPTER 10 - Macros 87

CRASH User's Manual

CHAPTER 11 - PREDEFINED FUNCTIONS AND SUBROUTINES

Introduction

The CRASH compiler has a library of functions and routines
which are pre-defined. All a user needs to do to use one of
these routines is to make a reference to it, it does not need to
be declared. These routines are useful in scientifTc
calculations, matrix operations, character string handling, and
type conversions.

11.1 Mathematical Functions

General Description

CRASH has several functions predefined for evaluating the
sine, cosine, arc-tangent, logarithm, natural anti-logarithm,
square root, and for generating uniform random numbers. All of
these functions take a real number argument and return a real
result.

Precise Description

A. ATAN(x)

The ATAN function is invoked with one real parameter, and
returns the arc-tangent in radians.

Example:
BEARING = ATAN(X + Y + Z);

Ek COS(x)

The COS function is called with an angle specified in radians.
The cosine is returned.

Example:
PHASE = COS(2*ANGLE);

£L EXP(x)

The EXP function returns the natural anti-logarithm of the
argument (e**x).

Example:
Y(T) = EXP(X(T)) ;

D. LOG(x)

The LOG function is invoked with a positive real number
parameter and returns the natural logarithm of the number.

Example:

CHAPTER 11 - Predefined Functions And Subroutines 89
398

CRASH User's Manual

X_COORDINATE = LOG(A * 3.67);

Hi SIN(X)

The SIN function returns the sine of an angle specified in
radians.

Example:
V(T) = SIN(THETA);

F. SQRT(x)

The SQRT function returns the square root of the real parameter.
If the value is negative, the absolute value is used, and a
negative result returned.

Example:
R = SQRT(X**2 + Y**2) ;

G. URAND

Function URAND computes a uniformly distributed random number
sequence from a real number seed. Each time URAND is called, a
real number value between 0 and 1 is returned. In addition, the
seed is changed according to the random number generating
algorithm. To generate a sequence of random numbers, then, all
that is necessary is to initialize the seed to some arbitrary
value, each call to URAND will update the seed automatically.

Example:
RAND = URAND(SEED);

11.2 Inline Functions

General Description

Some of the pre-defined functions are one or two
instructions. Since they are so trivial, CRASH emits very
efficient inline code to perform these functions.

Precise Description

Aj, LENGTH (x)

The LENGTH function returns the current length of the character
parameter.

Example:
BUFLEN = LENGTH(BUFFER);

90 CHAPTER 11 - Predefined Functions And Subroutines
39 9

CRASH User's Manual

B. MAXLEN(x)

The MAXLEN function returns the maximum number of characters
that will fit in the space allocated to the parameter.

Example:
SIZE = MAXLEN(BUFFER);

C. ADDR(x)

The ADDR function returns the address of the argument in the
LSI-11 memory. If a scalar or array element is specified, the
value returned is the address of the first byte of the variable.
If "x" is an array or delay variable, the dope vector address is
returned. If "x" is a procedure or task, the entry address is
returned, "x" may not be an expression.

Example:
STARTING_ADDRESS = ADDR(TASKA);

D. NUMARGS

A CRASH subroutine can be called with fewer parameters than were
declared in its procedure definition. The NUMARGS function can
be used to determine the actual number of parameters passed to
the subroutine.

Example:

SUB1: PROCEDURE (ARG1,ARG2,ARG3);
INTEGER ARG1,ARG2,ARG3;
IF NUMARGS < 3 THEN SHORTCALL = TRUE;

END SUB1;

E. ABS(X)

The ABS function returns the absolute value of the real or
integer parameter. If a real value is passed the value returned
is real, otherwise an integer is returned.

Example:

Z = ABS(X - 3.0) ;

CHAPTER 11 - Predefined Functions And Subroutines 91
400

CRASH User's Manual

11.3 Matrix Operations

General Description

Several subroutines are available in the CRASH library to
perform matrix arithmetic, copying, conversions, and logical
operations. All parameters to these routines are unsubscripted
variable names. These routines are appreciably more efficient
than writing DO loops to perform the given functions.

Precise Description

In all cases below, the C array is the
and must not be the same array as A or B.

A. IMTXADD and FMTXADD

destination array.

The operation C = A + B is performed by these two subroutines,
where A,B, and C are arrays with the same dimensions. FMTXADD is
for real arrays, and IMTXADD is for integer arrays.

Example
CALL FMTXADD(A,B,C);
CALL IMTXADD(A,B,C);

B. IMTXMUL, BMTXMUL, and FMTXMUL

The operation C = A * B is performed. A and B must be two
dimensional matricies, with the number of columns in A equal to
the number of rows in B. C must have the same number of rows as
A and the same number of columns as B. IMTXMUL does integer
multiplication and FMTXMUL does floating point arithmetic.
BMTXMUL performs Boolean multiplication, with "times" replaced
by "and" and "plus" replaced by "or".

Example
CALL IMTXMUL(A,B,C);
CALL FMTXMUL(A,B,C);
CALL BMTXMUL(A,B,C);

C. IMTXSUB and FMTXSUB

The operation C = A - B is performed, where A, B, and C are
arrays with the same dimensions. IMTXSUB is for integer arrays
and FMTXSUB is for real arrays.

Example:
CALL IMTXSUB(A,B,C);
CALL FMTXSUB(A,B,C);

92 CHAPTER 11 - Predefined Functions And
401

Subroutines

CRASH User's Manual

D. ISCLDIV and FSCLDIV

The operation C = B / A is performed, where B and C are like
dimensioned arrays, and A is a scalar. ISCLDIV is for integer
arrays and FSCLDIV is for real arrays.

Example :
CALL FSCLDIV(A,B,C);
CALL ISCLDIV(A,B,C);

E. ISCLMUL and FSCLMUL

The operation C = A * B is performed, where B and C are like
dimensioned arrays, and A is a scalar. ISCLMUL is for integer
arrays and FSCLMUL is for real arrays.

Example:
CALL FSCLMUL(A,B,C);
CALL ISCLMUL(A,B,C);

F. IMTXAND

The operation C = A AND B is performed, where A, B, and C are
integer or bit arrays of equal dimensions.

Example:
CALL IMTXAND(A,B,C);

G. IMTXOR

The operation C = A OR B is performed, where A, B, and C are
integer or bit arrays of equal dimensions.

Example:
CALL IMTXOR(A,B,C);

H. IMTXXOR

The operation C = A XOR B is performed, where A, B, and C are
integer or bit arrays of equal dimensions.

Example :
CALL IMTXXOR(A,B,C);

J. MTXMOV

The "A" matrix is copied into the "B" matrix. Both matricies
must have the same dimensions. Integer, real, or character
arrays can be moved by MTXMOV.

Example:
CALL MTXMOV(A,B);

CHAPTER 11 - Predefined Functions And Subroutines 93
402

CRASH User's Manual

K. ARRAYINFO

Subroutine ARRAYINFO can be used to determine the actual and
virtual bases of an array, the number of dimensions and the
elementsize (in bytes), and the lower and upper bounds for each
dimension of an array. There are three calls:

CALL ARRAYINFO(-1,ARRAY,ACTUAL,VIRTUAL);
CALL ARRAYINFO(0,ARRAY,ELEMENTSIZE,NDIMS);
CALL ARRAYINFO(DIMNUM,ARRAY,LB,UB) ;

Where :
"ARRAY" is the array in question.
"ACTUAL" is an integer variable to store the actual starting

address of the array storage area in.
"VIRTUAL" is an integer variable to store the virtual base

(see CRASH run-time strategy report) in.
"ELEMENTSIZE" is an integer to store the number of bytes

reserved for each element in the array.
"NDIMS" will contain the number of dimensions of the array.
"DIMNUM" is an integer (1 to NDIMS) specifying which

dimension lower bound and upper bound information is wanted.
"LB" will contain the lower bound for dimension DIMNUM.
"UB" will contain the upper bound for dimension DIMNUM.

11.4 Matrix Conversions

General Description

Two subroutines are provided to allow real-to-integer and
integer-to-real matrix conversions.

Precise Description

A. FMTX2I

This subroutine converts a real array to an integer array. Both
arrays must have the same dimensions.

Example:
CALL FMTX2I(REAL_ARRAY,INTEGER_ARRAY);

B. IMTX2F

This subroutine converts an integer array to a real array. Both
arrays must have the same dimensions.

Example:
CALL IMTX2F(INTEGER ARRAY,REAL ARRAY);

94 CHAPTER 11 - Predefined Functions And Subroutines
403

CRASH User's Manual

11.5 Character To Numerical Conversion

General Description

Included in the CRASH library are three subroutines to
convert ASCII character strings into integer or real numbers.

Precise Description

A. D2BIN

D2BIN is a CRASH function which attempts character to integer
conversion. The calling sequence is:

INT_VAR = D2BIN(STRING,BRKCHAR,IERR);

Where:
"STRING" is the character expression to be converted.
"BRKCHAR" is an integer variable which is modified by D2BIN

to specify the number of the character which caused conversion
to stop

"IERR" is an integer variable which will contain the return
code.

IERR is set to one of the following return codes:

0 — Conversion was terminated by a blank or comma
1 — Conversion overflow
2 — End of line was reached
3 — A character other than a comma or blank

terminated conversion
4 — A null string was passed

Examples:

STRING = ' 123 ' BRKCHAR = 4 IERR = 0
STRING = '123' BRKCHAR = 3 IERR = 2
STRING = ,1234A• BRKCHAR = 4 IERR = 3
STRING = '99999' BRKCHAR = 3 IERR = 1

B. D2FL0AT

D2FL0AT is a CRASH callable function which will attempt to
convert a character string into a floating point (REAL) number.
The calling sequence is:

REAL_VAR = D2FL0AT(STRING,BRKCHAR,IERR);

Where:
"STRING" is the character variable to be converted.
"REAL_VAR" is a REAL variable which will have the value of

the converted number.
"BRKCHAR" is the index which points to the character which

stopped conversion.

CHAPTER 11 - Predefined Functions And Subroutines 95
404

CRASH User's Manual

"lERR" is the return code.

Valid return codes are:

0 — Conversion normal
1 — Illegal character in input string
2 — Null string passed to D2FL0AT
3 — Conversion overflow

Examples:

STRING^ 2.3' BRKCHAR = 3 IERR = 0
STRING=,+2.3 ' BRKCHAR = 4 IERR = 0
STRING=,1.0E-55I BRKCHAR = 7 IERR = 3
STRING^ 2. SA' BRKCHAR = 3 IERR = 1
STRING^ 99999.0' BRKCHAR = 7 IERR = 0

C. 02BIN

02BIN is a CRASH function which attempts, octal character to
integer conversion. The calling sequence is:

INT_VAR = 02BIN(STRING,BRKCHAR,IERR);

Where :
"STRING" is the character expression to be converted.
"BRKCHAR" is an integer variable which is modified by 02BIN

to specify the number of the character which caused conversion
to stop

"IERR" is an integer variable which will contain the return
code.

IERR is set to one of the following return codes:

0 — Conversion was terminated by a blank or comma
1 — Conversion overflow
2 — End of line was reached
3 — A character other than a comma or blank

terminated conversion
(an illegal character was encountered)

4 — A null string was passed

Examples:

STRING = ' 123 ' BRKCHAR = 4 IERR = 0
STRING = '123' BRKCHAR = 3 IERR = 2
STRING = •1234A, BRKCHAR = 4 IERR = 3
STRING = '777777777' BRKCHAR = 4 IERR = 1
STRING ■ '89' BRKCHAR = 1 IERR = 3

96 CHAPTER 11 - Predefined Functions And Subroutines
405

CRASH User's Manual

11.6 Numerical To Character Conversion

General Description

The CRASH library also contains a subroutine to convert
integers to octal format ASCII character strings.

Precise Description

A. BIN20

BIN20 is a CRASH function which attempts integer to octal format
character conversion. The calling sequence is:

CHAR_VAR = BIN20(INT_VAR);

No errors are detected by this routine. The number is converted
into octal integer format, and placed right justified in a field
8 places wide, padded on the left with blanks if necessary. Note
that the destination variable in a BIN20 conversion must be 8 or
more characters wide.

11.7 OSWIT Interface Routines

General Description

Several subroutines and functions allow CRASH routines to
make system calls to OSWIT. Two other routines allow the user
access to memory by address. A function is also provided which
returns the value of the parameter field specified on the OSWIT
RUN command which invoked the MAIN procedure.

Precise Description

A. SYSTEM

Subroutine SYSTEM is simply called and causes immediate
termination of all active tasks including the MAIN procedure.

Example:

CALL SYSTEM;

B. OSWIT

Subroutine OSWIT is also simply called. It will call the OSWIT
command handler. If the user issues a RESTART command to OSWIT,
the procedure will continue executing.

CHAPTER 11 - Predefined Functions And Subroutines 97
406

CRASH User's Manual

C. PARFIELD

PARFIELD is a character function which returns the value of the
parameter field specified on the OSWIT RUN command. If no
parameter field was given, the null string is returned.

Example:

OPTIONS = PARFIELD;

D. READ

The READ subroutine allows record reads on any legal unit
number. The calling sequence is:

IRC = READ(unitnumber,inputstring);

Where:
"unitnumber" is an valid integer unit number.
"inputstring" is the character variable to contain the record

which is to be read. No length check is performed so the buffer
must be long enough for the maximum length record which is
expected.

"IRC" is an integer which will contain one of the following
return codes:

0 - OK
1 - End of file reached.
2 - Input line greater than 255 characters.
3 - Bad unit number.

Routine READ performs an automatic wait for the input operation
to be completed.

Examples

IF READ(26,INBUF) NOT = 0 THEN CALL IOERROR;
CALL READ(0,DATABUF);

E. WRITE

The WRITE subroutine allows record writes on any legal unit
number. The calling sequence is:

IRC ■ WRITE(unitnumber^outputstring);

Where:
"unitnumber" is an valid integer unit number.
"outputstring" is the character variable containing the

record which is to be written.
"IRC" is an integer which will contain one of the following

return codes:

0 - OK

98 CHAPTER 11 - Predefined Functions And Subroutines
407

CRASH User's Manual

1 - End of disk reached.
3 - Bad unit number.

Routine WRITE performs an automatic wait for the output
operation to be completed.

Examples:

IF WRITE(28,OUTBUF) NOT = 0 THEN CALL IOERROR;
CALL WRITE(0fDATABUF);

F. OPEN

This function is used to assign a file or pseudo-device to a
unit number. The prototype call is:

IRC = OPEN(STRING);

Where :
"STRING" is a character variable containing a legal OSWIT

assignment string.
"IRC" is an integer which will contain one of the following

return codes:

0 - OK
1 - File or device doesn't exist.
2 - Bad unit number.
3 - Illegal assignment string.

OPEN first closes the unit, reverting to the default of
MS0URCE (the console). Then an attempt is made to open the
unit attached to the specified device. If the OPEN fails, the
unit will be left attached to *MS0URCE*.

Examples

IF OPEN('0=*CONVERTER0*') NOT = 0 THEN CALL OPENERROR;
CALL OPEN('SPRINT=*DUMMY*');

G. CLOSE

Function CLOSE is used to close a logical unit number. The
default assignment of all units is to *MSOURCE* (the console).
The prototype call is:

IRC = CLOSE(UNITNUM);

Where:
"UNITNUM" is an integer unit number to be closed.
"IRC" is one of the following return codes:

0 - OK
1 - Bad unit number.

CHAPTER 11 - Predefined Functions And Subroutines 99
408

CRASH User's Manual

Example:

IF CLOSE(1) NOT = 0 THEN CALL CLOSEERROR;

H. SETPFX

This function is used to change the input prompt character for
the console. The calling sequence is:

IRC = SETPFX(UNITNUM,PROMPTCHAR);

Where:
"UNITNUM" is the unit number to change the prefix on.
"PROMPTCHAR" is a single character prompt. The default prompt

is a question mark (?) .
"IRC" one of the following integer return codes:

0 - OK
1 - Bad unit number.

Example: (to change the SCARDS prompt character to a *)

CALL SETPFX(26,'*•);

J, PEEK

Function PEEK returns the value of a word in memory as an
integer. The calling sequence is:

IVAL = PEEK(ADDR);

Where :
"ADDR" is an address of a memory location. If odd, the value

is truncated.

Example:

CONVERT = PEEK(O,,177170") ;

K. POKE

Subroutine POKE is used to change memory locations and to write
to devices by address. The call is:

CALL POKE(ADDRESS,VALUE,...,VALUEN);

Where:
"ADDRESS" is an integer memory address.
"VALUE" is one or more integer values to be stored in

consecutive . memory locations beginning with ADDRESS. Up to 62
values may be specified in a single call.

Examples:

100 CHAPTER 11 - Predefined Functions And Subroutines
409

CRASH User's Manual

CALL POKE(0"167752"fTINFO);
CALL POKE(O,'400,,,0,l,2,3) ;

CHAPTER 11 - Predefined Functions And Subroutines 101

410

CRASH User's Manual

CHAPTER 12 - WARNINGS, ERRORS, AND SEVERE ERRORS

Introduction

The CRASH compiler has three levels of errors: WARNING,
ERROR, and SEVERE ERROR. If appropriate, several different
attempts at error recovery will be tried, to salvage the rest of
the compilation. If things get really bad, even syntax-checking
is stopped, and the compiler shuts down.

12.1 Warnings

General Description

A WARNING message is generated by CRASH whenever an error
is detected which should not affect the compilation. The message
states what action was taken by the compiler to recover from the
minor error. The user should check this to make sure it will
have no effects on the desired program operation.

Precise Description

A. Constant Warnings

nCli-02. LENGTH OF STRING GREATER THAN 256 HAS BEEN TRUNCATED"

B. Declaration Warnings

nDC-22. MORE THAN ONE LDN SPECIFIED—EARLIEST SPECIFICATION WILL
BE USED."

"DC-26. 'OFFSET' SPECIFICATION MUST BE REAL—CONVERSION
PERFORMED"

"DC-27. 'SCALE' SPECIFICATION MUST BE REAL—CONVERSION
PERFORMED."

"DC-64. INTEGER INITIAL VALUE GIVEN IN A 'REAL' DECLARATION-
CONVERSION PERFORMED."

"DC-65. REAL INITIAL VALUE GIVEN IN A 'INTEGER' DECLARATION—
CONVERSION PERFORMED."

"DC-66. LENGTH OF INITIAL VALUE EXCEEDS MAXIMUM LENGTH OF
VARIABLE—TRUNCATION HAS OCCURED."

"DC-67. NUMBER OF INITIAL VALUES EXCEEDS ARRAY SIZE."
"DC-68. NUMBER OF INITIAL VALUES EXCEEDS DELAY SIZE."
"DC-69. NUMBER OF INITIAL VALUES EXCEEDS 1 FOR SCALAR"

C. DO Warnings

"DO-03. LABEL ON EXIT STATEMENT IS UNDEFINED—INNERMOST 'DO'
ASSUMED."

"DO-04. LABEL ON EXIT STATEMENT DOES NOT MATCH AN ACTIVE DO.
INNERMOST DO ASSUMED"

CHAPTER 12 - Warnings, Errors, and Severe Errors 103
411

CRASH User's Manual

D. END Warnings

"EN-Ol. AN UNLABELED 'END' HAS TERMINATED PROCEDURE-"
"EN-OS. LABEL ON 'END' DOES NOT MATCH PROCEDURE NAME: "
"EN-04. LABEL ON 'END' DOES NOT MATCH AN ACTIVE 'DO'.

INNERMOST 'DO' ASSUMED."

E. Macro Warnings

"MA-Ol. CAN MAP ONLY BIT, INTEGER, AND CHARACTER VARIABLES."
"MA-02. MACRO DEFINITION TABLE OVERFLOW, SIZE="
"MA-08. TOO MANY ARGUMENTS IN MACRO CALL "
"MA-09. MACRO PREVIOUSLY DEFINED: "

F. Procedure Warnings

"PR-03. PROCEDURE TYPE DOES NOT MATCH DECLARATION, THE DECLARED
TYPE WILL BE USED: "

G. Miscellaneous Warnings

"WA-00. PRECEEDING ERROR MAY CAUSE CRASH TO FLAG NEXT CARD BY
MISTAKE"

"WA-01. CHECKING ABORTED ON CARD"

12.2 Errors

General Description

An ERROR message is generated whenever an error is detected
which won't affect the compilation of the program, but probably
will affect the execution of the program.

Precise Description

A. Symbol Errors

"SY-03. MISSING EOF"

B. Undeclared Variable Errors

"UV-01. UNDEFINED SYMBOL:"
"UV-05. UNDECLARED PARAMETER. ASSUMED TYPE IS SCALAR INTEGER:"
"UV-Oe. UNDECLARED PROCEDURE. IT WILL BE ADDED IF POSSIBLE: "

C. Constant Errors

"CN-10. UNEXPECTED SEMICOLON HAS TERMINATED BIT STRING"
"CN-ll. CHARACTER STRING TERMINATED AT SEMICOLON"
"CN-12. ILLEGAL BIT STRING LENGTH—16 ASSUMED."
"CN-13. ILLEGAL CHARACTER STRING LENGTH—255 ASSUMED."

104 CHAPTER 12 - Warnings, Errors, and Severe Errors
412

CRASH User's Manual

D. Procedure Errors

"PR-CM. PROCEDURE CHARACTER SIZE DOES NOT MATCH DECLARATION, THE
DECLARED SIZE WILL BE USED: "

E. Variable Errors

"VA-06. LABEL IS MULTIPLY DEFINED, IT WILL BE IGNORED: "
"VA-07. DUPLICATE PARAMETER NAME, IT WILL BE IGNORED: "

F. Miscellaneous Errors

"OUTPUT" ON RIGHT-HAND SIDE OF EXPRESSION."
"INPUT" ON LEFT-HAND SIDE OF EXPRESSION."
ILLEGAL CONVERSION."
OUTPUT = OUTPUT; ??????"
ATTEMPT TO INPUT TO AN ILLEGAL STORAGE TYPE."
ATTEMPT TO ASSIGN TO AN ILLEGAL STORAGE TYPE."
ILLEGAL TYPE IN LOGICAL OPERATION."

G. DO Errors

"DO-06. LABEL ON 'NEXT' STATEMENT IS UNDEFINED: INNERMOST
"DO-07. LABEL ON 'NEXT' DOES NOT MATCH AM ACTIVE DO. INNERMOST

'DO' ASSUMED."

H. END Errors

"EN-02. MISSING 'END' ON ONE OR MORE 'DO'S. THEY ARE SUPPLIED."

I. Declaration Errors

"DC-00. THIS VARIABLE HAS ALREADY BEEN DECLARED: "
"DC-01. ATTRIBUTE 'GLOBAL' SPECIFIED MORE THAN ONCE."
"DC-02. ATTRIBUTE 'STATIC SPECIFIED MORE THAN ONCE."
"DC-03. ATTRIBUTE 'DISCRETE' SPECIFIED MORE THAN ONCE."
"DC-04. ATTRIBUTE 'ANALOG' SPECIFIED MORE THAN ONCE."
"DC-06. GLOBAL VARIABLES CANNOT HAVE 'STATIC ATTRIBUTE— STATIC

IGNORED."
"DC-07. GLOBAL VARIABLES CANNOT HAVE INITIAL ATTRIBUTE UNLESS IN

MAIN PROCEDURE—INITIAL IGNORED."
"DC-10. ARRAY VARIABLES CANNOT HAVE 'DISCRETE' ATTRIBUTE—

DISCRETE IGNORED."
"DC-11. DYNAMIC ARRAYS CANNOT HAVE 'INITIAL' ATTRIBUTE—INITIAL

IGNORED."
"DC-12. A '*' SHOULD BE USED HERE IN THE PARAMETER LIST— PASSED

SIZES WILL BE USED."
"DC-13. A '*' FIELD IS MEANINGFUL ONLY FOR PARAMETERS."
nDC-20. STATIC VARIABLES CANNOT HAVE 'GLOBAL' ATTRIBUTE— GLOBAL

IGNORED."
"DC-24. MORE THAN ONE DELAY SPECIFIED—EARLIEST SPECIFICATION

WILL BE USED."
"DC-25. MORE THAN ONE OFFSET SPECIFIED—EARLIEST SPECIFICATION

WILL BE USED."

CHAPTER 12 - Warnings, Errors, and Severe Errors 105
413

CRASH User's Manual

"DC-30. PROCEDURES CANNOT HAVE •GLOBAL1 ATTRIBUTE— GLOBAL
IGNORED."

"DC-31. PROCEDURES CANNOT HAVE 'INITIAL1 ATTRIBUTE— INITIAL
IGNORED."

"DC-32. PROCEDURE CANNOT HAVE 'STATIC ATTRIBUTE— STATIC
IGNORED."

nDC-33. PROCEDURES CANNOT HAVE 'INITIAL' ATTRIBUTE— INITIAL
IGNORED."

"DC-34. PROCEDURES CANNOT HAVE 'DISCRETE' ATTRIBUTE— DISCRETE
IGNORED."

"DC-40. 'ANALOG' VARIABLES CANNOT HAVE DISCRETE ATTRIBUTE—
DISCRETE IGNORED."

"DC-50. 'DISCRETE' VARIABLES CANNOT HAVE 'ANALOG' ATTRIBUTE—
ANALOG IGNORED."

"DC-51. 'DISCRETE' VARIABLES CANNOT HAVE 'OFFSET' ATTRIBUTE—
OFFSET IGNORED."

"DC-52. 'DISCRETE' VARIABLES CANNOT HAVE 'SCALE' ATTRIBUTE—
SCALE IGNORED."

"DC-61. INITIAL VALUES MUST BE INTEGER FOR INTEGER VARIABLES."
"DC-62. INITIAL VALUES MUST BE CHARACTER FOR CHARACTER

VARIABLES."
"DC-63. INITIAL VALUES MUST BE REAL FOR REAL VARIABLES."
"DC-70. MORE THAN ONE INITIAL SPECIFIED—EARLIEST SPECIFICATION

WILL BE USED."

J. Macro Errors

"MA-03. ILLEGAL CHARACTER IN MACRO "
"MA-05. ILLEGAL PARAMETER FIELD DELIMITER "
"MA-Oe. MISMATCHED PARENTHESIS IN MACRO "
"MA-07. IMPROPER MACRO TEXT DELIMITER "

12.3 Severe Errors

General Description

When a SEVERE ERROR is detected, the compiler has found an
error which will hopelessly mess up the object produced. Hence,
assembly code generation is stopped. To facilitate the error
finding process, syntax checking continues normally. If more
than 10 severe errors are detected, the compilation is
terminated. SEVERE ERRORS include syntax errors - an illegal
form of a statement and illegal characters. In this case,
several attempts are made to flush the current statement until a
fresh start can be made with a new statement.

Precise Description

A. Symbol severe errors

"SY-01. ILLEGAL SYMBOL PAIR: "
"SY-02. NO PRODUCTION IS APPLICABLE ."
"SY-04. UNEXPECTED EOF"
"SY-05. EOF AT INVALID POINT. "

106 CHAPTER 12 - Warnings, Errors, and Severe Errors
414

CRASH User's Manual

B. Constant Severe Errors

"CN-00. INVALID TYPE FOR CONSTANT."
"CN-01. ILLEGAL CHARACTER IN BIT STRING:"

C. Variable Severe Errors

"VA-OO. ILLEGAL CHARACTER: "
"VA-01. ILLEGAL FIRST CHARACTER FOR IDENTIFIER:"
"VA-03. VARIABLE NOT DECLARED AN ARRAY: "
"VA-04. THIS VARIABLE WAS NOT DECLARED AS AN INTERNAL PROCEDURE:

II

"VA-05. THIS PROCEDURE HAS ALREADY BEEN DEFINED: "
"VA-09. RESERVED WORD USED IN ARITHMETIC EXPRESSION: "
"VA-20. ONLY INTEGERS ALLOWED WITH MOD FUNCTION"
,,VA-21. CHARACTER VARIABLE USED IN ARITHMETIC EXPRESSION: "
"VA-30. INCORRECT NUMBER OF SUBSCRIPTS SPECIFIED FOR ARRAY."

D. Compiler Severe Errors

"CO-08. STACK OVERFLOW"
"00-42. DO-STACK OVERFLOW (TOO MANY DO'S)"

E« Undefined Variable Severe Errors

"UV-Ol. UNDECLARED PARAMETER USED IN ARITHMETIC EXPRESSION: "
"UV-02. TOO MANY UNDEFINED VARIABLES IN PROCEDURE (10 IS

MAXIMUM)"

F. Condition Severe Errors

"CH-01. ILLEGAL CONTEXT FOR CONDITION: "
"CH-02. ATTEMPT TO SUBSCRIPTRANGE CHECK SOMETHING WHICH ISN'T AN

ARRAY: "
"CH-03. ATTEMPT TO STRINGRANGE CHECK SOMETHING WHICH ISN'T A

CHARACTER STRING: "
"CH-04. ATTEMPT TO DELAYOVERFLOW CHECK SOMETHING WHICH ISN'T A

DELAY VARIABLE: "

G. Procedure Severe Errors

"PR-01. ATTEMPT TO CALL SOMETHING WHICH ISN'T A PROCEDURE: "
"PR-02. PROCEDURE NAME NOT A LEGAL ARGUMENT: "
"PR-04. NESTING LEVEL IS TOO DEEP FOR PROCEDURE: "
"PR-05. PROCEDURE NAME USED AS VARIABLE: "

H. Task Severe Errors

"TA-01. ONLY ONE TASK NUMBER. MAY BE SPECIFIED FOR "
"TA-02. NO TASK IDENTIFIER SPECIFIED FOR "
"TA-03. TASK CANNOT BE SCHEDULED WITHOUT PRIORITY

SPECIFICATION."

CHAPTER 12 - Warnings, Errors, and Severe Errors 107
415

CRASH User's Manual

I. DO Severe Errors

"DO-01. ITERATION VARIABLE NOT AN INTEGER"
"DO-02. ATTEMPT TO EXIT A NON-EXISTENT DO. STATEMENT IGNORED."
"DO-05. ATTEMPT TO 'NEXT' A NON-EXISTENT DO.—STATEMENT

IGNORED."

J. Declaration Severe Errors

"DC-14. DIMENSION LIST MUST APPEAR BEFORE ANY ATTRIBUTES."
"DC-IS. DIMENSIONS MUST BE INTEGER VALUES."
"DC-16. LOWER BOUND EXCEEDS UPPER BOUND."
"DC-21. ILLEGAL LDN SPECIFIED—NO ASSIGNMENT WILL BE MADE."
"DC-22. ILLEGAL DELAY SPECIFIED—A DELAY OF 1 IS ASSIGNED."
"DC-35. ILLEGAL PROCEDURE DEFINITION."
"DC-36. PROCEDURE CANNOT HAVE A DIMENSION LIST."
"DC-53. 'DISCRETE' VARIABLES MUST BE INTEGER."
"DC-60. 'INITIAL' MUST BE LAST ATTRIBUTE."
"DC-80. ILLEGAL ATTRIBUTE FOR A GIVEN TYPE."
"DC-81. ILLEGAL ATTRIBUTE FOR AN ARRAY DECLARATION."
"DC-82. ILLEGAL ATTRIBUTE FOR A PROCEDURE DECLARATION."
"DC-83. ILLEGAL DECLARATION FOR A PARAMETER."

K. Bit Selection Severe Errors

"BS-01. FIELD DESCRIPTOR MUST BE INTEGER VARIABLE OR CONSTANT."
"BS-02. FIELD DESCRIPTOR IS [FIRST,LENGTH] ."

108 CHAPTER 12 - Warnings, Errors, and Severe Errors
416

CRASH User's Manual

CHAPTER 13 - KNOWN COMPILER BUGS AND RESTRICTIONS

1. Character arrays cannot have a string length of 255.

2. Assignments to DELAY variables from INPUT may not
contain a delay indicator (e.g. D2=INPUT is not
allowed). Due to improper implementation, any delay
indicator specified is ignored.

Chapter 13 - Known Compiler Bugs and Restrictions 109
417

CRASH User's Manual

CHAPTER 14 - RAID SYMBOLIC DEBUGGER

Introduction

RAID, or Real-Time Applications Interactive Debugger is an
optionally invoked programming aid which can be used to control
the execution of a user CRASH program. Facilities are provided
for monitoring the contents of program variables at user
specified breakpoints in external procedures. With its
complement of commands, RAID car. help get the bugs out of user
programs.

14.1 General Information

RAID will be invoked upon program execution if either
parameter /* $D */ or /* $D2 */ precedes the CRASH main
procedure definition in the source file used at compilation.
Additionally, each external procedure compiled separately from
the main must have one of the parameters precede its procedure
definition.

These , parameters cause symbol table information to be
emitted along with the CRASH object, allowing RAID access to
variables, statements, and procedures. /* $D */ outputs tables
for the main procedure and all external procedures compiled with
the main. For large programs, the extra memory requirements of
the tables may exceed the LSI-11 memory capacity. To shrink
table size the /* $D2 */ parameter omits tables for the main
procedure but includes tables for inter procedure tracing. Thus
this option is for the user who does not require RAID to debug
the main procedure.

RAID resides in K2ATrCRASHLIB and must be linked using
*LINK11 with user's object.

14 . 2 Statement Numbers

To the left of each line in a CRASH listing appears a
statement number, each external procedure having its own set of
them. Each executable statement within an external procedure is
assigned its own statement number. Nonexecutable CRASH
statements (such as declarations) also have statement numbers;
however, that same statement number will also be assigned to the
first executable statement which follows.

Because CRASH is a free format language, several statements
may appear on the same line, yet only one statement number
precedes the whole line. The printed statement number is
assigned to the first executable statement on the line. The next
consecutive integer is assigned as the statement number for the
next executable CRASH statement on the line, and so on. The
statement numbers on subsequent lines are adjusted to account
for muiti statements on preceding lines.

Chapter 14 - RAID Symbolic Debugger 111
418

CRASH User's Manual

Statement numbers are used in RAID as a means of setting
breakpoints, places where program execution can be halted.
Additionally, statement numbers are used as a means of
indicating where execution is halted when stepping through the
program with the STEP command. In both cases, halting at a
statement occurs before the statement has been executed.

14.3 RAID Mode

General Description

RAID is entered upon the initial execution of the user
program, upon termination of a STEP command, and upon execution
of a breakpoint. RAID consists of a set of commands which allow
the user to monitor variables, and decide other stopping points
in the user program where RAID is entered.

The RAID commands are entered by keyboard in any truncated
form and are recognized when enough of the command name is
inputted to distinguish it from other commands. Any required
parameters should appear on the same line as the command,
separated by blanks or commas.

The following describes each command; the full command name
is followed by any required parameters denoted in brackets.

Precise Description

A. PROC

The PROC command specifies the external procedure in which
breakpoints are to be set or restored. Upon entry, the default
value is the main procedure. The full name of the external
procedure should be entered as the parameter. The command format
is:

PROC <external procedure name>

Examples:

PROC MAINP
P TASK1 (abbreviated form)

B. BREAK

The BREAK command is used to set breakpoints at statement
numbers in the external procedure specified by the PROC command.
Optionally, an iteration counts can be specified with the
statement numbers. The command format is:

BREAK <statement_number> [@<iteration_count>,...,
<statement_number>@<iteration count>]

112 Chapter 14 - RAID Symbolic Debugger
419

CRASH User's Manual

RAID accommodates up to 16 breakpoints. Breakpoints are only set
at the executable statements within the external procedure
specified by the PROC command and several breakpoints may be set
with a single command. When the user program reaches a
breakpoint, RAID is entered.

An optional iteration count may be specified with the
statement number. This allows the statement to be executed a
number of times without a break and then return control to RAID
on the nth time, where n is the iteration count. This is useful
when breakpoints are set in a loop, and the user does not wish
to halt execution on every iteration through the loop. The
maximum <iteration_count> is 32,767 and the count must be
greater than zero. <iteration_count> is specified for a
breakpoint by appending an @ sign followed by the
<iteration_count> (with no intervening blanks) to the statement
number. If no @ or <iteration_count> appears, a default value of
1 is assumed. <iteration_count>s may be changed by just entering
the statement number with new <iteration count> according to the
previously described format.

Examples:

BREAK 3, 5@2, 6@7
BR 4, 6, 10
BRE 7

C. RESTORE

The RESTORE command removes breakpoints from statements in the
external procedure specified by the PROC COMMAND. The command
format is:

RESTORE <statement_number> [,...,<statement_number>]

Specifying the statement number will remove the that statement.
Note that this can even be done to remove the current
breakpoint.

Examples:

RE 5,7,9
RESTORE 10

D. CLEAN

The CLEAN command restores all breakpoints set in all
procedures. The command format is:

CLEAN

Chapter 14 - RAID Symbolic Debugger 113
420

CRASH User's Manual

Examples

CL
CLEAN

E. LIST

The LIST command is used to display all breakpoints currently
set . The command format is:

LIST

For each breakpoint set, a message is outputted stating the
statement number, external procedure, and <iteration_count> for
that breakpoint. If no breaks are set, nothing is printed.

Examples:

LI
LIST

F. RUN

The RUN command initiates execution of the user program under
RAID, and may be used to continue user program from a breakpoint
or step point.

Examples

RU
RUN

G. CONTINUE

The CONTINUE command performs the same function as the RUN
command.

Examples:

CO
CONT
CONTINUE

114 Chapter 14 - RAID Symbolic Debugger
421

CRASH User's Manual

H. STEP

The STEP command causes execution of the <number of statements>
specified before returning control to RAID. If no parameter is
given, a default of 1 is assumed. The command format is:

STEP <number_of_statements>

The STEP command has some unique aspects. Statements executed
are only counted against the step command when they are in the
same internal procedure as the one the STEP was given in. Thus a
CALL to another procedure and all the statements executed as a
result of that call count as only one statement.

If a STEP command is given in an internal procedure which
would cause the procedure to return, the STEP is terminated
before the return and control goes to RAID.

Should a breakpoint be encountered before the STEP is
completed, the step will resume execution if a RUN or CONTINUE
is issued from the breakpoint. However, if a new STEP command is
given at the breakpoint, the old STEP command is lost.

Examples:

ST 1
STEP 5

Disclaimer; There is a hardware bug in the LSI-11 which may
cause RAID to go into on infinite loop while tracing with a STEP
command through a multiply operation. Should this happen, press
the break button on the DECwriter, followed by a P. Doing this
several times may bring it out of the loop. Note that multiply
instructions may be executed in the following types of
statements: array subscripting, multiplications, character to
numeric type conversions, and scheduling statements.

J. OSWIT

The OSWIT command calls the operating system. To return, just
issue the RESTART command in OSWIT.

Examples:

0
OSWIT

Chapter 14 - RAID Symbolic Debugger 115
422

CRASH User's Manual

K

The EXIT command terminates the user program and unloads it,

Examples:

E
EXIT

L. LOCK

The LOCK command prevents tasks from starting while under
control of RAID The priority while in RAID is raised to the
highest level when the command is given, and any time a
breakpoint or step returns control to RAID. STEP or CONTINUE
then reduce the priority while the user program executes.

Examp. Les:

LO
LOCK

M. UNLOCK

The UNLOCK command allows tasks to execute while in RAID, but
any breakpoints set in executing task are ignored. The purpose
of this command is to allow the user to monitor global variables
as they change with the executions of a task (assuming this is
humanly possible) . It is best used with relatively infrequently
executing tasks. Should a breakpoint be set in an executing task
when in RAID, the breakpoint will be ignored and a message
outputted indicating this. The message will appear only the
first time the particular breakpoint is ignored. The message
indicates which break was ignored by printing its rank in the
breakpoint table used by RAID. The user may determine which
break was ignored by doing a LIST command.

Examples:

UN
UNLOCK

N. DISPLAY

The DISPLAY command is used to display the value of program
variables. The command format is:

;
DISPLAY <variabie> [,...,<variable>]

116 Chapter 14 - RAID Symbolic Debugger
423

CRASH User's Manual

This command allows the display of variables local to the
procedure from which the entry to RAID was made, GLOBAL
variables, and variables referenced under the normal rules of
scope. If the procedure from which RAID was entered is one which
recursively calls itself, the only local variables which may be
seen are those belonging to the most recently invoked version of
the procedure. Integer, Real or Character variables may be
displayed in scalar or array form. Delay variables may also be
displayed.

The type of each variable is determined from symbol
information generated by the CRASH compiler. The effect of the
type information is shown below:

CHARACTER:
The string presently assigned to the variable is
displayed. Each variable is displayed on a separate
line. Character strings longer than 132 characters are
truncated to the first 132 characters.

REAL: The value of the variable is displayed. Up to 10 values
will be printed per line.

INTEGER:
(also BIT variables): The value of the variable is
display in base 10. Up to 10 values will be printed per
line.

If an array or delay variable name is given, the entire
array will be printed in row major order. An option is available
to print only a selected range of values in an array or delay
variable. Subscript values or ranges may be attached to an array
or delay variable reference, e.g. <variable>(lo:hi). In this
case, lo and hi specify the range of subscript values for which
the array values are to be printed. This range specification
works fine for singly dimensioned arrays and delay variables.
However, only a restricted form of it is available for arrays of
two and three dimensions. Only the lowest order index may have a
range as above; higher order indices should appear as single
values.

Two options are available for displaying INTEGER or BIT
variables in alternate forms. An @B may be attached to a
variable specification to cause it to be displayed in binary,
and an @0 may be attached to cause it to be displayed in octal.

Examples:
DISPLAY INT_SCALAR
DIS INT_VEC(5)
D DELAY_VAR(0:3)
DIS TWO_DIM(35,7:10)
DIS THREE_D(4,3,7)

Chapter 14 - RAID Symbolic Debugger 117
424

CRASH User's Manual

DIS INT VAR@N

P. MODIFY

The modify command allows values of variables to be changed. The
command format is:

MODIFY <var_construct> <value>,...,<value>

Any variable which may be displayed may be modified. The format
for specifying a variable is the same as in DISPLAY. Only a
single variable name may be specified per line. The @B and @0
modifiers may be used if it is desired to enter new values for
INTEGER or BIT variables in binary or octal. New values are
separated by one or more spaces. Character strings are enclosed
in single primes, e.g. 'a character string'.

Examples:

MODIFY INT_VAR 35
MOD REAL_VAR 45.36
M CHAR_VAR 'new_string'
MOD INT_VEC(4) 49
MOD REAL_ARRAY(4,2,7:9) 32.1 45.9 98.2
MOD INT_VAR@0 123

Q. CALL

The CALL command allows the user to execute an external
procedure from RAID. The command format is:

CALL <procedure_name>

The full procedure name must be entered. At this time, no
parameter passing is permitted.

Examples:

CALL TASK1
CALL SAMPLE2

14.4 Miscellaneous Information

Though RAID is normally entered upon program initiation and
upon user set breakpoints, it is possible to use DEBUG to insert
IOT instructions in the code, or to insert them via the MTS
editor prior to execution of the *11ASR assembler. The IOT
instruction will also cause entry to RAID. Caution must be
exercised, however. Only CALL, LOCK, UNLOCK, RUN, CONTINUE, or

118 Chapter 14 - RAID Symbolic Debugger
425

CRASH User's Manual

CLEAN commands can be issued, as RAID has no way of determining
from which procedure it was entered, and thus doesn't know which
tables to use.

If an error message is printed indicating an error on a
command line containing multiple operations, all operations up
to the faulty one will have been processed when the error
message is printed.

Chapter 14 - RAID Symbolic Debugger 119
426

CRASH User's Manual

APPENDIX A: RUN-TIME STRATEGY AND CALLING CONVENTIONS

A,Tasks and Procedures
The task which gets started by the RUN command must be a

MAIN procedure. The MAIN procedure will be given a priority of
zero (the lowest possible priority) by the RUN command. When the
MAIN procedure returns, it and all tasks which it may have
started are unloaded and a return is made to the operating
system. Similarly, the STOP statement, which can appear in any
task, also causes everything to be unloaded and a return to be
made to the operating system. A MAIN procedure differs from
other external procedures in that it has associated with it an
extra csect, #GLOBAL#, which contains all GLOBAL variables. An
external procedure is compiled as a separate object module. A
TASK is just an external procedure without parameters. If an
external procedure is called by an- executing task, that
invocation of the procedure becomes "part" of the executing
task; it may, however, be started as a separate task with an
independant priority and execution schedule. All procedures are
re-entrant (with the exception of procedures which declare, and
change, static variables) since storage for all automatic scalar
and array variables will be kept on the stack. Since all
procedure parameters are passed by reference rather than by
value-result, the procedures are not completely recursive in the
usual sense. A user with knowledge of the internal data
structures used by CRASH can still obtain recursive behavior
however by making judicious use of automatic variables and
temporary parameter values which are generated during procedure
calls in certain situations.

B.Data Types
GLOBAL Variables are implemented as in *EXPL, i.e. as an

extra csect. Each global variable then becomes an entry point
into the #GLOBAL# csect. A reference to a global variable in a
different external procedure is made indirectly through a VCON
which will is resolved eventually by the link-editor. As in
*EXPL, all global variables must be declared in the MAIN
procedure; any initialization for these global variables must
also be done in the MAIN procedure. Any global variable declared
in another external procedure must have the same type and
dimensions; no compile or run time check on this will be
performed.

Non-global scalars or arrays can be either STATIC or
AUTOMATIC (the default). Storage for a procedure's automatic
variables is allocated on the runtime stack by the prologue code
upon entry to the procedure and deallocated by the epilogue
code. Storage for all static variables is assigned permanently
by CRASH at compile time.

Arrays are stored internally in row major form, as in PL/1,

Appendix A: Run-time strategy and calling conventions. 121

427

CRASH User's Manual

with the rightmos
Variable sized array
lower bounds are
dimension will be ze
vector for any array
procedure. As a c
same dimensionality
To insure compatib
procedure must have
Arrays can have up t
lower bounds. The f
a typical array:

<- - -2 bytes-

actual base

virtual base

t subscript index varying most rapidly,
s are permitted and programmer specified
supported. The default lower bound in any
ro. There will be only one copy of the dope
, even when it is passed as a parameter to a
onsequence, arrays must be defined with the
in both the calling, and called procedures,
ility, all formal array parameters to a
their bounds declared as * (i.e. A(*,*,*)).
o 62 dimensions and may have any upper and
ollowing is a diagram of the dope vector for

- ->

ndimens lelemsize

lb(l)

size (1)

sf (1)

lb(n)

si ze(n)

sf (n)

lower bound in first dimension

size in first dimension

scale factor for first dimension

lower bound in n'th dimension

size in n'th dimension

scale factor for n'th dimension

The address of element 11,12,...,In is:
Virtual Base + II * sf(i)+ 12 * sf(2) + ... + In * sf(n)

Where: Virtual Base = Baseaddr - [lb(l) * sf(l) + ... +
lb(n) * sf(n)]

And where: Baseaddr = the address of the array storage area
The array element address calculation will always be done via a
submonitor call.

122 Appendix A: Run-time strategy and calling conventions.
428

CRASH User's Manual

sf(i) = size(i+l) * size(i+2) * ... * size(n) * elemsize [i<n]
sf(n) ,= elemsize

A dope vector is used internally to store all real and
integer scalar variables which have the Analog or Discrete
attribute. The dope vector looks as follows

|<- - -2 bytes- - ->'

I Current Address

Index

Delay size

LDN | Type

Scale
(4 bytes)

Offset
(4 bytes)

(Defaults to 1.0, not
used for Discrete variables)

(Defaults to 0.0, not
used for Discrete variables)

Current Address points to the current delay element.
Index is a counter used in finding the address of

in the delay element
times elementsize

associated with this

previous (or the next) delay element.
Delay Size is the number of bytes

storage area: number of delay elements
(2 or 4) .

LDN is the Logical Device Number
variable.

Type tells which type of delay variable it is:
0/1 - Discrete
2/3 - Real Analog
4/5 - Real Analog with default scale & offset
6/7 - Integer Analog
8/9 - Integer Analog with default scale & offset
Bit 0 specifies Word(0) or Byte(l) I/O.

Scale indicates the scaling associated with this variable.
Offset indicates the offset associated with this variable.
If an Analog or Discrete variable is a procedure parameter,

the calling program's dope vector will be used; therefore it is
not necessary to declare scales, offsets, etc., for such
parameters. If those attributes are provided with a delay
variable parameter CRASH will put out a warning message
indicating that those attributes will be ignored.

Storage for delay variables is implemented as a circular
list. Whenever a new "current" value is input, it is pushed onto
the circular list. An uninitialized delay variable dope vector
initially contains the last address of the element storage area
in "current address" and the elementsize (2 or 4) times the

Appendix A: Run-time strategy and calling conventions,
429

123

CRASH User's Manual

nnumber of elements to be kept in "index". The procedure for
pushing new elements onto the list then is:

1) add the elementsize to both "current address" and
"index".

2) if "index" is not greater than "delay size"... finished,
3) else sub "delay size" from both "current address" and

"index".
While this algorithm is not the most straight-forward way to
implement a circular list, it has the advantage that the
corresponding PDP/11 LSI code is very efficient in most cases.

Character Strings are stored with two (fullword aligned)
bytes of control information preceding the actual string text.
The first byte indicates the maximum length of the string; the
second byte indicates the current length of the string. There is
no free string area as in *EXPL; a character string occupies its
maximum byte size for the duration of its existence. A character
string passed as a parameter must be declared with an * size in
the called program (i.e. character(*)) to indicate that the size
specified by the calling program will be honored.

Note: The format used internally by the operating system
for character strings is different. There, character strings are
not necessarily full-word aligned, and the string is preceeded
only by a one-byte current length no maximum length is kept.
Whenever CRASH sends the address of a string to the operating
system, it adds one to the address it (CRASH) normally uses for
the string. Similarly, any string received by CRASH from the
operating system must have a maximum length added to it before
it can be used by CRASH.

Bit Strings are always stored right-justified in one word
(16 bits). A bit string passed as a parameter must also be
declared with an * size in the called program (i.e. bit(*)).

All declarations for BOOLEAN variables in CRASH source
programs are transformed in the scanner by predefined macros
into declarations for BIT(l) variables.

Integer and Real variables are stored in standard PDP/11
internal form with lengths of 2 and 4 bytes respectively.

C.Calling Sequences

The standard PDP-11 calling conventions will be honored,
The stack (upon procedure entry) should look as follows:

|old PC I (closer to address 00000)

I MARK n

I
|A(param #1)

124 Appendix A: Run-time strategy and calling conventions.
430

CRASH User's Manual

A(param #n)

old R5 (closer to address 37777)

R5 points to the MARK instruction. SP points to the old PC.
Return to the calling procedure is achieved by issuing an RTS R5
(after resetting SP so that it points to the old PC again). As
explained below, RO and Rl are also used for passing possible
function values back from the called program.

The same calling sequence is used for internal and external
procedures. The only difference is that an internal procedure is
addressed via an ACON while a VCON must be used for external
procedures.

Sample Program;

This LSI-11 assembly language program will be called
as a CRASH function to add three integers.

The operation:

RESULT=NUM1+NUM2+NUM3 ;

will be performed by the CRASH call:

RESULT=ADDNUMS(NUM1,NUM2,NUM3);

where ADDNUMS has been declared as an external
integer procedure:

INTEGER ADDNUMS EXTERNAL;

LSI-11 Program:

ADDNUMS CSECT
PRINT OFF Supress printing of controls,equ's,etc.
COPY K2AT:EQU
PRINT ON

* EQU's to access our parameters and return value

NUM1 EQU 2
NUM2 EQU 4
NUM3 EQU 6
PARBASE EQU R5
RETVAL EQU RO

* Sum the parameters into RO.

Appendix A: Run-time strategy and calling conventions,
431

125

CRASH User's Manual

MOV NUM1(PARBASE),RETVAL First parameter
ADD NUM2(PARBASE),RETVAL Plus second parameter
ADD NUM3(PARBASE),RETVAL Plus third parameter

*

* Now we have NUM1+NUM2+NUM3 in RO, the return value register
* for INTEGER and BIT functions.Since we haven't used the

stack for anything, the stack pointer still points to the
* OLD PC and we merely:

RTS R5 To return to caller
END

The above program may be assembled using *11ASR, and
then linked with any CRASH program using *LINKll.This would
then allow its use as a CRASH function as described.

*

D.Parameter Passing

All parameters are passed by reference. Procedure name
parameters and label parameters are not allowed. There is no
implicit conversion of parameters performed during a procedure
call.

Function calls and returns are handled as follows:
a) if it is an integer or bit-string function, the value is
returned in RO.
b) if it is a real function, the value is returned in RO and Rl.
c) if it's is a string function, at the time of the function
call, RO will contain the address where the result should go.

Any procedure may be called as either a function or as a
subroutine. If an integer, real, or bit-string procedure returns
a result, the result is put in register(s) R0/R1 and can be
ignored. Before calling any procedure, RO will be zeroed. Then,
if a procedure returns a string, it will first examine the
address in RO. If that address is non-zero, the string value
will be returned; otherwise, no value will be returned.

Variable length parameter lists are also allowed. If more
parameters are passed to a procedure than have been declared for
it, the extra parameters are ignored. If fewer parameters than
have been declared are passed, the remaining parameters are left
undefined; any attempt by the procedure to reference these
parameters will likely cause trouble. There is a built-in
function (NUMARGS) to tell the programmer how many arguments
were actually passed.

126 Appendix A: Run-time strategy and calling conventions.
432

CRASH User's Manual

E.Register Usage
We will follow standard PDP11 conventions on usage of PC,

SP and R5 for subroutine calls. During execution of a procedure
registers R2-R5 will be used as base registers for the dynamic
data areas (DDA's) of other procedures global to the one
currently executing. we have permanently reserved R2 for the
current level 0 procedure, always an external procedure, and R3-
R5 for the current procedures (if any) at levels 1 through 3. As
a result of this register allocation scheme, we are not allowing
CRASH procedures to be nested more than 4 levels deep else
we would have to go to a much more complicated register
allocation scheme. The remaining registers, RO and Rl, are used
as scratch registers; when, rarely, a third scratch register is
necessary, one of the base registers is stored temporarily in
the DDA at label #ROFLWnn.

The prologue code takes care of setting up the required
base registers upon entry to each procedure. USING and DROP
pseudo-ops for *11ASR are also issued so that, in the emitted
code, variables at any nesting level (with the proper scope
rules, of course) can be referenced directly by name.

F.Subscriptrange, Stringrange and Delayoverflow

Subscript checking can be turned on and off for individual
arrays at compile time, but this checking is only performed
within the procedure currently being compiled, if the array is
passed as a parameter to another procedure and subscript
checking is desired within that procedure, it must be specified
at compile time for that procedure. The same comments also apply
to stringrange checking and delay-overflow checking.

Iz. *11ASR Symbol Name Generation Algorithm
Since CRASH variable names can be up to 255 characters long

while the *11ASR assembler allows only a maximum name length of
8 characters, an algorithm must be defined to map CRASH variable
names into a form that *11ASR accepts. The *11ASR assembler will
be run in batch mode processing the code generated for each
external procedure (one CSECT) separately. Therefore, this
encoding algorithm need only remove the possibility of conflicts
between names generated for any single external procedure and
each of its associated internal procedures, if any. There must
also be a way for CRASH to define internal names for
temporaries, labels, etc. which will not conflict with other
CRASH symbol names. The algorithm is as follows:
1) Each procedure is assigned a unique two digit Procedure

Number, nn. The external procedure always gets number 00;
internal procedures get higher numbers according to their
order of definition.

2) The character H#" which is illegal in all CRASH variable
names but is legal in *11ASR symbol names, is used in all

Appendix A: Run-time strategy and calling conventions. 127
433

CRASH User's Manual

CRASH-generated internal names to prevent conflicts.
3) All CRASH global variables and external procedure names are

simply truncated to eight characters (with the illegal
11ASR character ™ replaced by "#) and used directly as
*11ASR external symbols. The user must make sure that this
truncation does not cause any conflicts.

4) Since the same variable name might be used at several
different nesting levels, each static and automatic
variable name is modified for *11ASR by appending the first
few characters (the number will vary) to #sti (where sti is
the index of the variable in the symbol table). Thus if the
symbol ERRORX has index 17 in the symbol table, its
generated name will be #17ERR0R. If the same symbol is
later declared in another procedure (and is located at
index 328 in the symbol table) its generated name is
#328ERRO.

5) Internal names generated by CRASH consist of "#", followed by
a 2-5 letter name (no digits) , followed usually by a two
digit reference counter. Some of the internal names
generated are:

#LABii Labels needed for branches
#DDAnn Name used for Dynamic Data Area DSECTS
#STRii String constants

H. Storage Allocation
Each internal procedure (and external procedure) will

generate one dsect describing a procedure's Dynamic Data Area

[DDA) which will look as follows;

: SP points here
variable size
storage area

< R5 points here

constant size array
storage area

size delay variable
storage area

automatic array
dope vectors

automatic delay variable
dope vectors

automatic scalars

(closer to address 00000)

128 Appendix A: Run-time strategy and calling conventions.

434

CRASH User's Manual

ION-condition pointers

1
Idynamic size

I
register overflow area

REGSAVE/REGRSTR area

old PC

MARK instruction

parameter addresses (closer to address 37777)

Description of DSECT Contents:
Variable Size Storage Area; This region is not really part

of the DDA. It is allocated after the DDA by the prologue code
(discussed later) and is accessed indirectly through array dope
vectors which are in the DDA.

Constant Size Array Storage Area; The form is:
#AASAii DS ... automatic array storage area
Delay Variable Storage Area: The form is:
#DLYSAii DS ...
Automatic Array Dope Vectors: The form is:
#stiNAME DS A a full automatic

array dope vector into which
the dope vector skeleton (ISKDVii)
is copied by the prologue code

Automatic Delay Variable Dope Vectors: The form is:
fstiNAME DS A a full delay variable

dope vector into which the
dope vector skeleton (#SKDLYii)
is copied by the prologue code

Automatic scalars: The form is:
#stiNAME DS ...

If an initial value was specified, it is moved in by the
prologue code.

ON-Condition Pointers: The form is:
#DFLTnn DS 2F
#SBCKsti DS F

pointers for default error checking
pointer(s) for subscript checking
for each array being checked

#STCKsti DS F pointer(s) for stringrange checking
for each character variable/array
being checked

Appendix A: Run-time strategy and calling conventions.
435

129

CRASH User's Manual

#DOCKsti DS F pointer(s) for delay overflow
checking for each delay variable
being checked

This storage is reserved as a result of the presence of CHECK
and IGNORE statements. The pointers point to various Submonitor
routines which will handle any errors that are found.

Register Overflow Area; The form is:
IROFLW DS F

This word is used as a temporary save area for a DDA base
register if more than than two scratch registers are required.
See the "Register Usage" section for more details.

Dynamic Size: The form is:
tDYNSZnn DS F

This is the size, in bytes, of the variable size storage area
plus the worst case, maximum amount of stack space required. It
is set by the prologue code and used for stack overflow
checking.

REGSAVE/REGRSTR: This is the save area into which the
REGSAVE subroutine stores the values of the registers upon entry
to the procedure, and which REGRSTR uses to restore their values
at exit. The Regsave subroutine puts the current contents of
registers R0-R5 onto the stack, with R5 going on first and RO
last (i.e. RO is closest to address 00000 and is referenced as
#REGSAnn).
The form is:

#REGSAnn DS 6F
Old PC: Stored automatically during the procedure call by

the JSR instruction. The form is:
iOLDPCnn DS A
Mark Instruction: Stored during the standard subroutine

call. It is used to determine the number of parameters actually
passed to the subroutine. The form is:

#MARKnn DS F
Parameters: Parameter addresses are provided by the calling

program as specified in the calling conventions. All references
to a parameter are made indirectly through the parameter address
provided in this area. The form is:

#stiNAME DS A

fstiNAME is the encoded name of the parameter. The DSECT will
contain a label for each parameter, but on a given call, all the
parameters may not really be provided by the calling program.

Each external procedure will generate one csect which looks
as follows:

I procedure body | external
I epilogue I procedure
I prologue I code

I I

130 Appendix A: Run-time strategy and calling conventions,

436

CRASH User's Manual

procedure body
epilogue
prologue

string constants

static scalar storage

static delay variables

static array
dope vectors and
array storage

automatic array and
delay variable
dope vector skeletons

initial values for
arrays and scalars

Actually the code for
in the procedure in which it
branches around the internal

The prologue code will
the last physical part of the
is necessary because CRASH
information about which ON
well as the maximum amount of
overflow checking) cannot be
prologue code emission routi
been scanned.
Description of CSECT Contents

Prologue: (same for exte
a) save the registers on the

calling sequence for REG
MOV $RGSAVE,-(SP)
JSR R5,SP)+

for first
internal procedure
(if any)

other
internal
procedures

skeletons for
the external procedure
(if any)

skeletons for the
internal procedures
(if any)

each internal proce
is defined. The g
procedure's code,
be executed first e
procedure code. Th
is a one-pass

-Condition pointer
stack space used (

known (& used by
nes) until the enti

dure is imbedded
lobal procedure

ven though it is
e inverted order
compiler; the

s are needed, as
needed for stack
the compiler's

re procedure has

rnal and internal procedures)
stack via a call to REGSAVE.
SAVE i s:

The

Appendix A: Run-time strategy and calling conventions,
437

131

CRASH User's Manual

b) Push SP to leave enough room for fixed portion of the DDA.
(check for possible stack overflow first).
SUB size(#DDAnn),SP performs this. Note that size{#DDAnn)
can be calculated by the assembler, (i.e. #DDASZnn EQU
#REGSAnn-#DDAnn.)

c) Set Rbr to point where SP points (where "br" is the number of
the base register for the current DDA).

d) Move in initial values for automatic scalars.
e) Move in automatic array and delay variable dope vector

skeletons.
f) Set up automatic delay variable dope vectors.
g) Fill in missing parts of dynamic array dope vectors.
h) Move in initial values for non-dynamic automatic arrays.
i) Acquire room on stack for the variable size array storage

(checking for stack overflow first),
j) Initialize the ON-Condition checking pointers to zero
k) Set the Dynamic Size (for stack overflow checking)

The first instruction in the prologue code, the entry point
into the procedure, will be labelled with the *llASR-encoded
procedure name which is #stiNAME for internal procedures and the
procedure name truncated to 8 characters for external
procedures.

Epilogue; (same for external and internal procedures)
a) If this is a character string valued procedure, then if a
non-zero return address has been supplied by the calling
program, move the return string to that address. Set up the
return value in R0/R1 for all other function types, this is done
indirectly; the old values of R0/R1 which were saved on the
runtime stack by REGSAVE are replaced by these new values for
R0/R1. Actually, this step will be done by the code
corresponding to the return statement before it emits a branche
to the epilogue code.
b) Pop off the variable size array storage area and the DDA from
the stack:

MOV Rbr,SP (Rbr is the current DDA base
register)

ADD size(#DDAnn),SP
c) Restore the registers (via REGRSTR). The calling sequence for
REGRSTR is:

MOV $RGRSTR,-(SP)
JSR R5,SP)+

d) Return: RTS R5
The first instruction of the epilogue code will be labelled

#EPLGnn. All RETURN statements in the procedure will generate a
branch to this label.

String constants: Storage for string constants referenced
anywhere within the external procedure or any of the internal
procedures. The form is:

#STRii DC H,,...,,,H1,.. .",0' '
Note that no space is reserved in the CSECT for INTEGER,

BIT or REAL constants. Each of these will be assembled as
immediate operands. This is also the case with all address
constants.

Static Scalar Storage: The form is:

132 Appendix A: Run-time strategy and calling conventions.
438

CRASH User's Manual

fstiNAME DS ...
tstiNAME is an *11ASR name generated using the encoding
algorithm described earlier. If an initial value was specified,
a DC is used.

Static Delay Variable Dope Vectors and Storage; The form
is :

#stiNAME DC F'....1 dope vector
and delay
element
storage

Static Array Dope Vectors and Array Storage: The form is:
#stiNAME DC F'Wirtual base"

same dope
vector format
described earlier

•
DS/DC static array storage area
fstiNAME is defined as before. The DS/DC saves room for the

dope vector and the array and initializes the array storage.
Automatic Array and Delay Variable Dope Vector Skeletons: A

separate block of dope vector skeletons is kept here for each
procedure; that way, those dope vectors can be moved all at once
into the DDA by the prologue code. There are two symbols
associated with each block:

#SKCSnn label of the block beginning
fSKCSLnn "EQU" for the block length
In addition the place into which this data is to be copied

in the DDA is labelled "#SKDSnn".
For every automatic array or delay variable, the base

address field of the dope vector will always have to be filled
in at run time by the procedure entry prologue code. For
dynamically dimensioned arrays, more will have to be filled in.
The dope vector skeleton is a copy of the dope vector with as
much filled in as possible. It is copied to the DDA by prologue
code at runtime, and is completed then.

Initial Values for Arrays and Character Scalars: These
values are copied Tnto the DDA by the prologue code at procedure
entry. The form is:

#INITii DC ...
For integer and real scalars, the value need not be stored,

but can be initialized by the prologue code using immediate
operands. For example: MOV =5,#2VAR where VAR has been
declared as automatic integer scalar.

I. Submonitor and Operating System Procedures
The following routines are incorporated into the Operating System:
Core dump facility LOCK and UNLOCK primitives Data type conversions
The following routines will be incorporated into the Submonitor:
Array indexing and subscriptrange check Dynamic array dope vector
initialization Matrix algebra Mathematical analysis package I
routines Substring Concatenation Bit-string manipulations String
manipulations Stringrange checking Delay overflow checking Error
handling The following functions will be done in-line: Stack

Appendix A: Run-time strategy and calling conventions. 133
439

CRASH User's Manual

overflow checking NUMARGS (function which returns the number of
arguments passed to a procedure) LENGTH (function which returns the
current length of a string or character variable) MAXLEN (function
which returns the maximum length of a character variable))

134 Appendix A: Run-time strategy and calling conventions.
440

CRASH User's Manual

APPENDIX B: THE BNF GRAMMAR FOR CRASH

$ *
$ * *** GOAL SYMBOL ***
$ *
<PROGRAM> ::= <PROCEDURE LIST>

$ *
$ * *** PROCEDURE DECLARATION ***
$ *
<PROCEDURE LIST> ::= <PROCEDURE DEFINITION> ;

I <PROCEDURE LIST> <PROCEDURE DEFINITION> ;

$ *
$ * *** PROCEDURE DEFINITION ***
$ *
<PROCEDURE DEFINITION> ::= <PROCEDURE DECLARATIONS>

<STATEMENT LIST> <ENDING>

$ *
$ * *** PROCEDURE DECLARATIONS ***
$ *
<PROCEDURE DECLARATIONS> ::= <PROCEDURE HEAD>

I <PROCEDURE HEAD> <DECLARATION LIST>

$ *
$ * *** POSSIBLE HEADS ***
$ *
<PROCEDURE HEAD> ::= <PROCEDURE NAME> ;

I <PROCEDURE NAME> MAIN ;
I <PROCEDURE NAME> TASK ;
I <PROCEDURE NAME> <PARAMETER LIST>;

$ *
$ * *** PROCEDURE NAME ***
$ *
<PROCEDURE NAME> ::= <LABEL DEFINITION> PROCEDURE

<PROCEDURE NAME> ::= <LABEL DEFINITION> <TYPE> PROCEDURE

<LABEL DEFINITION> ::= <IDENTIFIER> :

$ *
$ * *** PROCEDURE TYPE ***
$ *
<TYPE> ::= INTEGER

REAL
<BIT HEAD> <INTEGER CONSTANT>)
<BIT HEAD> *)
<CHARACTER HEAD> <INTEGER CONSTANT>)
<CHARACTER HEAD> *)

Appendix B: The BNF Grammar for CRASH 135
441

CRASH User's Manual

$ * *** PARAMETER LIST ***
$ *
<PARAMETER LIST>

<PARAMETER HEAD>

<STATEMENT LIST>

:= <PARAMETER HEAD> <IDENTIFIER>)

;= (
<PARAMETER HEAD> <IDENTIFIER> ,

= <STATEMENT>
<STATEMENT LIST> <STATEMENT>
<ERROR CHECK> ;
<STATEMENT LIST> <ERROR CHECK> ;
<PROCEDURE DEFINITION> ;
<STATEMENT LIST> <PROCEDURE DEFINITION> ;

$ *
$ * *** TYPES OF STATEMENTS ***
$ *
<STATEMENT> ::= <BASIC STATEMENT>

I <IF STATEMENT>
I <SCHEDULE STATEMENT>

$ * *** BASIC STATEMENTS ***
$ *
<BASIC STATEMENT> <ASSIGNMENT> ;

<GROUP> ;
<RETURN STATEMENT> ;
<CALL STATEMENT> ;
<GO TO STATEMENT> ;
t

<GET LIST STATEMENT> ;
<PUT LIST STATEMENT> ;
LOCK ;
UNLOCK ;
<WAIT STATEMENT> ;
<EXIT DO> ;
<NEXT DO> ;
STOP ;
<LABEL DEFINITION> <BASIC STATEMENT>

$ * *** DECLARATION STATEMENT ***
$ *
DECLARATION LIST> ::= <DECLARATION STATEMENT>

I DECLARATION LIST> <DECLARATION STATEMENT>

DECLARATION STATEMENT> ::= <DECLARE HEAD> DECLARE ELEMENT> ;

<DECLARE HEAD> = <TYPE>
ROUTINE
TASK
<DECLARE HEAD> <DECLARE ELEMENT> ,

136 Appendix B: The BNF Grammar for CRASH
442

CRASH User's Manual

<DECLARE ELEMENT> ::= <IDENTIFIER>
I <IDENTIFIER LIST>
I <DECLARE ELEMENT> <ATTRIBUTE>
I <DECLARE ELEMENT> <DIMENSION LIST>

<IDENTIFIER LIST> ::= <IDENTIFIER HEAD> <IDENTIFIER>)

<IDENTIFIER HEAD>

<DIMENSION LIST>

<DIMENSION HEAD>

<DIMENSION ELEMENT>

::» (
IDENTIFIER HEAD> <IDENTIFIER> ,

= <DIMENSION HEAD> <DIMENSION ELEMENT>)

:= (
<DIMENSION HEAD> <DIMENSION ELEMENT>

::= <DIMENSION BOUND>
I <DIMENSION BOUND>
I *

<DIMENSION BOUND>

<ATTRIBUTE>

<BIT HEAD>

:= <LDN HEAD> <INTEGER CONSTANT>)
<DELAY HEAD> <INTEGER CONSTANT>)
<SCALE HEAD> <SIGNED CONSTANT>)
<OFFSET HEAD> <SIGNED CONSTANT>)
<INITIAL HEAD> <SIGNED CONSTANT>)
<INITIAL HEAD> <INTEGER CONSTANT> #

<SIGNED CONSTANT>)
<MAP HEAD> <MAP ELEMENT>)
<CLAMP HEAD> <INTEGER CONSTANT> ,

<INTEGER CONSTANT>)
EXTERNAL
INTERNAL
ANALOG
DISCRETE
GLOBAL
STATIC
WORD
BYTE
PACKED

;= BIT (

<CHARACTER HEAD> ::= CHARACTER (

<LDN HEAD> ::= LDN {

<DELAY HEAD> ::= DELAY (

<SCALE HEAD> ::= SCALE (

<OFFSET HEAD> ::= OFFSET (

<INITIAL HEAD> ::= INITIAL (
I <INITIAL HEAD> <SIGNED CONSTANT> ,
I <INITIAL HEAD> <INTEGER CONSTANT> #

Appendix B: The BNF Grammar for CRASH 137
443

CRASH User's Manual

<SIGNED CONSTANTS

<MAP HEAD> ::= MAP {
I <MAP HEAD> <MAP ELEMENT> ,

<CLAMP HEAD> ::= CLAMP (
I <CLAMP HEAD> <SIGNED CONSTANT> ,

<SIGNED CONSTANT> ::= <CONSTANT>
I <+ SIGN> <CONSTANT>
I <- SIGN> <CONSTANT>

<MAP ELEMENT> ::= <IDENTIFIER>
1 <IDENTIFIER> <FIELD DESCRIPTION>

<FIELD DESCRIPTION> ::= <FIELD HEAD> <EXPRESSION>]

<FIELD HEAD> ::= [
I <FIELD HEAD> <EXPRESSION> ,

$ *
$ * *** ASSIGNMENTS ***
$ *
<ASSIGNMENT> ::= <VARIABLE> <REPLACE> <EXPRESSION>

I <LEFT PART> <ASSIGNMENT>

<REPLACE> ::=

<LEFT PART> ::= <VARIABLE> ,

$ *
$ * *** VARIABLE ***
$ *
<VARIABLE> ::= <IDENTIFIER>

I <SUBSCRIPT HEAD> <EXPRESSION>)
I <VARIABLE> @ <SIMPLE VARIABLE>
I <VARIABLE> <FIELD DESCRIPTION>

<SUBSCRIPT HEAD> ::= <IDENTIFIER> (
I <SUBSCRIPT HEAD> <EXPRESSION>

$ *
$ * *** DIRECT I/O ***
$ *
<GET LIST STATEMENT> ::= <GET HEAD> <VARIABLE>

<PUT LIST STATEMENT> ::= <PUT HEAD> <VARIABLE>

<GET HEAD> ::= GET
I GET RECORD { <EXPRESSION>)
I <GET HEAD> <VARIABLE> ,

<PUT HEAD> ::= PUT
I PUT RECORD (<EXPRESSION>)

138 Appendix B: The BNF Grammar for CRASH
444

CRASH User's Manual

I <PUT HEAD> <VARIABLE> ,

$ *
$ * *** WAIT STATEMENT
$ *
<WAIT STATEMENT> ::= <WAIT> FOR <EXPRESSION>

I <WAIT> FOR EXPRESSION LIST> <EXPRESSION>

<WAIT> = WAIT

$ *
$ * *** GO TO STATEMENT ***
$ *
<GO TO STATEMENT> ::= <GO TO> <IDENTIFIER>

<GO TO> ::= GO TO
GOTO

$ *
$ * *** CALL STATEMENT ***
$ *
<CALL STATEMENT>

<CALL HEAD> ::=

<CALL PARAMETERS>

= <CALL HEAD>
<CALL HEAD> <CALL PARAMETERS> <EXPRESSION>)

CALL <IDENTIFIER>

:= (
<CALL PARAMETERS> <EXPRESSION> ,

$ * *** EXPRESSIONS ***
$ *
<EXPRESSION> ::= <LOGICAL TERM>

I <EXPRESSION> OR <LOGICAL TERM>

$ *
$ * *** LOGICAL EXPRESSIONS ***
$ *
<LOGICAL TERM> ::= <LOGICAL FACTOR>

I <LOGICAL TERM> XOR <LOGICAL FACTOR>

<LOGICAL FACTOR> <LOGICAL SECONDARY>
<LOGICAL FACTOR> AND <LOGICAL SECONDARY>

<LOGICAL SECONDARY> ::= <LOGICAL PRIMARY>
I NOT <LOGICAL PRIMARY>

<LOGICAL PRIMARY> ::= <TWO BIT EXPRESSION>
<TWO R^T EXPRESSION> <RELATION>

<TWO BIT EXPRESSION>

<RELATION>
<
>

Appendix B: The BNF Grammar for CRASH 139
445

CRASH User's Manual

I NOT =
1 NOT <
I NOT >
I < =
I > =

$ *
$ * *** TWo BIT EXPRESSIONS ***
$ *
<TWO BIT EXPRESSION> ::= ARITHMETIC EXPRESSION>

I ARITHMETIC EXPRESSION> | |
<TWO BIT EXPRESSION>

$ *
$ * *** ARITHMETIC EXPRESSION ***
$ *
ARITHMETIC EXPRESSION> ::= <TERM>

I <ARITHMETIC EXPRESSION> + <TERM>
I <ARITHMETIC EXPRESSION> - <TERM>
I + <TERM>
I - <TERM>

<TERM> ::= <FACTOR>
I <TERM> * <FACTOR>
I <TERM> / <FACTOR>
I <TERM> MOD <FACTOR>

<FACTOR> ::= <PRIMARY>
I <PRIMARY> ** <FACTOR>

<PRIMARY> ::= <CONSTANT>
I <VARIABLE>
I (<EXPRESSION>)

$ *
$ * *** CONSTANTS ***
$ *
<CONSTANT> ::= <REAL CONSTANT>

I <INTEGER CONSTANT>
I <STRING CONSTANT>

$ * *** GROUP STATEMENTS ***
$ *
<GROUP> ::= <GROUP HEAD> <ENDING>

$ *
$ * *** POSSIBLE HEADS ***
$ *
<GROUP HEAD> ::= <DO> ;

I <DO> <STEP DEFINITION> ;
I <DO> <WHILE> <EXPRESSION>
I <DO> <UNTIL> <EXPRESSION>
I <DO> <CASE> <EXPRESSION> ;

140 Appendix B: The BNF Grammar for CRASH
446

CRASH User's Manual

I <GROUP HEAD> <STATEMENT>

$ *
$ * *** STEp DEFINITION ***
$ *
<STEP DEFINITION> ::= <VARIABLE> <REPLACE> <EXPRESSION>

<ITERATION CONTROL>
I <VARIABLE> <REPLACE> <EXPRESSION LIST>

<EXPRESSION>
I <VARIABLE> <REPLACE> <EXPRESSION>

$ *
$ * *** CONTROL HIS ITERATIONS ***
$ *
<ITERATION CONTROL> ::= TO <EXPRESSION>

I TO <EXPRESSION> BY <EXPRESSION>

$ *
$ * *** DO PRODUCTIONS TO HELP SYNTHESIZE ***
$ *
<DO> ::= DO

<UNTIL> ::= UNTIL

<WHILE> ::= WHILE

<CASE> ::= CASE

$ *
$ * *** EXIT DO STATEMENT ***
$ *
<EXIT DO> ::= EXIT DO

I EXIT DO <IDENTIFIER>

<NEXT DO> ::= NEXT DO
I NEXT DO <IDENTIFIER>

$ *
$ * *** EXPRESSION LIST ***
$ *
EXPRESSION LIST> ::= <EXPRESSION> ,

I <EXPRESSION LIST> <EXPRESSION> ,

$ *
$ * *** GROUP STATEMENT END ***
$ *
<ENDING> ::= END

I END <IDENTIFIER>
I <LABEL DEFINITION> <ENDING>

$ * *** RETURN STATEMENT ***
$ *
<RETURN STATEMENT> ::= RETURN

Appendix B: The BNF Grammar for CRASH 141
447

CRASH User's Manual

I RETURN <EXPRESSION>

$ *
$ * *** SCHEDULE STATEMENT ***
$ *
<SCHEDULE STATEMENT> ::= <EVERY> <TIME> <START TASK> ;

<IN> :TIME> <START TASK> ;
<CANCf:L> <TASK> ;
<0N> <CONDITION> <START TASK> ;
<0N> <CONDITION> <BASIC STATEMENT>
<0N> <CONDITION> <IF STATEMENT>
<AT> <TIME> <START TASK> ;
<REVERT CONDITION> ;
<LABEL, DEFINITION> <SCHEDULE STATEMENT>
<START TASK> ;

<CONDITION> ::= <VARIABLE>

<AT> ::= AT

<0N> ::= ON

<IN> ::= IN

<REVERT> ::= REVERT

<CANCEL> ::= CANCEL

<EVERY> ::= EVERY

<TIME> ::= <SIMPLE VARIABLE>
1 <SIMPLE VARIABLE> MIN
I <SIMPLE VARIABLE> SEC
I <SIMPLE VARIABLE> MSEC

<TASK> ::= <VARIABLE>
I <VARIABLE> <PRIO HEAD> <SIMPLE VARIABLE>)

<PRIO HEAD> ::= PRIO (

$ *
$ * *** COMPILE TIME ERROR CHECK FLAGS ***
$ *
<ERROR CHECK> ::= <CHECK> <CONDITION>

I <IGNORE> <CONDITION>

<CHECK> ::= CHECK

<IGNORE> ::= IGNORE

$ *
$ * *** IF STATEMENT ***
$ *
<IF STATEMENT> ::= <IF CLAUSE> <STATEMENT>

142 Appendix B: The BNF Grammar for CRASH
448

CRASH User's Manual

I

<IF CLAUSE> : : =

<TRUE PART> ::=

<IF CLAUSE> <TRUE PART> <STATEMENT>
<LABEL DEFINITION> <IF STATEMENTS

IF <EXPRESSION> THEN

<BASIC STATEMENT> ELSE

$ * *** jUNK NEEDED TO MAKE (2,1;1,1) PARSING WORK ***
$ *
<+ SIGN> ::= +

<- SIGN> ::= -

<SIMPLE VARIABLE> ::= <IDENTIFIER>
I <INTEGER CONSTANT>
I <REAL CONSTANT>

<DIMENSION BOUND> ::= <SIGNED CONSTANT>
I <IDENTIFIER>
I <+ SIGN> <IDENTIFIER>
I <- SIGN> <IDENTIFIER>

<START TASK> ::= START <TASK>

<REVERT CONDITION> ::= <REVERT> <CONDITION>

Appendix B:. The BNF Grammar for CRASH 14 3

449

CRASH User's Manual

INDEX *

Addition , 33
ADDR , 91
ANALOG 14,19
Arithmetic Operators 33
Array 69

Subscript 69
ARRAYINFO 94
Arrays 15,69

Dimension List ,21
List 70
Single Subscript 70

Assignment 33
Assignments 38

Multiple 39
AT 57
ATAN 89
Attributes 17,19

ANALOG 5,19
BYTE 5,24
CLAMP 5,19
DELAY 5,19
DISCRETE 5,19
EXTERNAL 21
GLOBAL 5,20
INITIAL 22
INTERNAL 21
LDN 5,19
MAP 5,23
OFFSET 5,19
PACKED , 5
SCALE '. 5,19
STATIC 20
WORD 5,24

AUTOMATIC 16

BIN20 97
BIT 14,18
Bit Selection 37
BMTXMUL 92
Boolean 35
Boolean Operators 36
BREAK 112
BYTE 24

CALL 118
CANCEL 58
CARD 62
CASE 44
CHARACTER 14,18
CHECK 75

*Page numbers in this Index refer to the number in the lower comer of each page.

450 Index 145

CRASH User's Manual

CLAMP 19
CLEAN 113
CLOSE 99
Comments 9
Concatenation 36
Conditions 57,59

INTERRUPT 59
IO_RETURN 59

Constants 11
Bit 12
Integer 11
Real 11
String 12

CONTINUE . . 114
Conversion 38
Conversions 34 95 97
COS ..,,..., .89

Data Acquisition 73
Data Types, BIT k !..,.5

CHARACTER ,.! 1 !!!!! 5
INTEGER .,!,!!! 1 ! is
REAL,,.!!!!!!!! 5

Debug HI
Declarations 17

Types 18
DELAY 19
DELAYRANGE '.'.'.'.'.'.'.'.'.'.'.'.'.'.'.76
Delay Variables 15
Dimensions .21
DISCRETE !!!!!!!!! 14 ' 19
DISPLAY ,!!!!!.. 116
Division ^33
D0 41-4 2

CASE 44 46
EXIT 45
Iterated 42 45
NEXT , ..,...,!!,.'45
Stepped 43,46
UNTIL 44
WHILE .,..43

DO FOREVER ! 85
D2BIN !!!!!!! 95
D2FLOAT !!!!!!!!!!!!!!!! 95

ELSE 47
END!.!!!!";*.!! 31
Erroi: 103-104
Messages .103
Severe !.!.*!.*!!."103)106
Warning 103

EVERY 57
EXIT ...!...!!!!'. 1!!"!!" 'he
EXIT DO 45

146 Index
451

CRASH User's Manual

EXP 89
Expression 33
Expressions 33
Arithmetic 33
Boolean 35
Logical 35
Precedence 34

EXTERNAL 21, 27

FMTXADD 92
FMTXMUL 92
FMTXSUB . .92
FMTX2I 94
FSCLDIV 93
FSCLMUL 93
Functions 29

Address 91
Arc-tangent 89
Cosine 89
Length 90
Logarithm 89
Maximum Length 91
Natural Anti-logarithm 89
Sine , . .90
Square Root 90

GET 63
GET RECORD 66
GLOBAL 16-17,20
GO TO 49
Groups 4 2

Identifiers 12
IF i 47
IGNORE 76
IMTXADD 92
IMTXAND 93
IMTXMUL 92
IMTXOR 93
IMTXSUB 92
IMTXXOR 93
IMTX2F 94
IN 57
$INCLUDE 83
Including An MTS File 83
Indenting 48
INITIAL 22
Input 3,61-62
GET 8
Stream 8

INTEGER 13,18
INTERNAL 21, 27
INTERRUPT 59
IO_RETURN 59

452 Index 147

CRASH User's Manual

ISCLDIV 93
ISCLMUL 93

Labels 44,49
LDN 19
LENGTH 90
Levels 41
LIST 114
Lists 70
LOCK 116
LOG 89
Logical Expressions 35

Macros 85
Definitions 85
Expansion 86

MAIN 28
MAP 23
Matrix, Addition 92

Assignment 93
Conversion 94
Conversions 94
Logical AND 93
Logical Exclusive OR 93
Logical OR 93
Multiplication 92
Scalar Division 93
Scalar Multiplication 93
Subtraction 92

MAXLEN , , . . .91
MOD 33-34,40
MODIFY 118
MTXMOV , ... ,93
Multiplication 33

Nesting 41,48
NEXT DO 45

OFFSET 19
0N 57,76
OPEN 99
Operator Precedence 34 ,40
OSWIT 97,115
Output 3,61,63

PUT 8
Stream 8

02BIN '.'.'.'.'.'.'.'.96

Parenthesis 34
PARFIELD 98
PEEK '.'.'.'.'.'.'.'.100
POKE 100
Precedence , 34
Priority '.'.'.'.'.'.'.'.'.'.'.55

148 Index 453

CRASH User's Manual

PROC 112
PROCEDURE 30
Procedure END 31
Procedures 8 ,27

EXTERNAL 27
Functions 29
INTERNAL 27
MAIN 5,28
Nesting 4
Subroutines 28
TASK 27

PUT 65
PUT RECORD 67

RAID HI
READ 98
REAL 14,18
Real Time 2
Relation 35
Relational Operators 35
Reserved Words 25
RESTORE 113
RETURN 29
RETURNCODE 68
REVERT 77
ROUTINE 18
RUN , 114

Scalars 15
SCALE 19
Scheduling 56

AT 57
EVERY 57
IN 57
ON 57

Scope 41
SETPFX 100
Severe Errors 103,106
SIN 90
SQRT 90
START 57
Statements , Assignment 33,38

CHECK 75
Compound 42
Declaration 30
DO 41-42
DO CASE 44
DO UNTIL 44
DO WHILE 43
END 31
EXIT DO 45
GET 63
GO TO 49
IF 47

454 Index 149

CRASH User's Manual

IGNORE 76
Iterated DO 4 2
Labelling 44
NEXT DO 45
ON 76
PROCEDURE 30
PUT 65
Scheduling 8,56
Stepped DO 43

STATIC 16-17,20
STEP H5
Storage 16

Automatic 16
Global 17
Static 17

Strings 36
Subroutine 33
Subroutines 28
Subscript 69
Subscript Checking 75
SUBSCRIPTRANGE ! ! ! ! [76
Substrings 37
Sub-unit Selection 37
Synchronous Timing 3
SYSTEM '.'.'.'.'.'.'.'.'.'.97

TASK 18 ,27
Tasks 2,8,53,55

Cancelling 58
Identifiers 55
PRIORITY ! ! ! ! ! 8 *, 53 ', 55
Scheduling 53,56
Time 53

THEN '.'.'.'.'.'.'.'.'.'.'.'.47
Time 53
Toggles .81

UNITNUMBER 68
UNLOCK 116
UNTIL !!.44
URAND '.'.'.'.'.'.'.90

Variables H
Bit '.'.'.'.'.'.'.'.'.'.'.'.'.'.'.14
Character 14
Integer ^13
Real 14

WAIT 68
Warnings 103
WHILE '.'.'.'.'.'.'. 43
WORD ,,.,.,.!! 24
WRITE !I !! ! 98

150 Index 455

Appendix C: TRAIN LAYOUT

TRAIN LAYOUT
456

y-s/

Appendix D: CIRCUITS FOR HARDWARE

Drawings of the hardware circuits are

available at the University of Michigan.

CIRCUITS FOR HARDWARE

458

Appendix E: DETAILED COURSE OUTLINE

DETAILED COURSE OUTLINE

459

11/29/77

CICE/ECE/IOE 469

Course Outline

Professor Volz

Principles of application of real time computer systems to
engineering problems. Topics include: computer characteristics
needed for real time use, mini/micro computer operating systarns,
man-computer communicaLion, basic digital logic design, analog
signal processing and conversion, and inter-computer coramanication.
Topics investigated via laboratory using microprocessor system.
Three lectures and one three hour laboratory per week.

I. Introduction to Real Time Computations

II. LSI-11 - Software Considerations

A. Memory organization
B. Instruction & PSW format
C. Addressing considerations
D. Use of assembler and operating system

III. Ii^terrupt Processing and Device Programing - Software Point
of View

A. Introduction +-o LSI-11 architecture
B. Priority interrcspl-. processing
C. Parallel and Seria-. Interfaces

IV. Conversion Techniques

A. Simple D/A conversion techniques
B. Simple A/D conversion techniques -
C. Multiplexing
D. Typical performance and cost characteristics

V. Data Sampling

A. Frequency domain viewpoint
B. Sampling theorem
C. Practical considerations (e.g. noise and pre filtering)

VI. Introduction to Digital Process Control

A. Z-transforms and transfer functions
B. Performance measures
C. Stability
D. PID controller
E. Implementation considerations

460

VII. Multiple Task Considerations

A. Resource sharing
B. Synchronous and asynchronous tasks
C. Intertask communication
D. Typical "Real Time Operating System" features

VIII. LSI-11 architecture

A. Bus structure
B. Interrupts
C. Direct Memory Access

IX Device Controllers

A. Address decoding
B. Examples of special purpose controllers
C. Noise in logic circuits

X. Computer-Computer Communication

A. Examples of several networks
B. Basic problems in computer networks
C. MCP protocol on MTS

XI. Brief Survey of Other Mini-Micro Computers

A. Architectural differences and impact on performance

Devices controlled by computers in lab

'Servo motor

•Simulations on analog computer

'N guage model railroad

461

-2-

Appendix F: LABORATORY PROJECT STATEMENTS

CICE 469

LABORATORY PROBLEM 1

Objective: To familiarize the student with the LSI-11, the
CRASH compiler and the OSV7IT operating system, and
to develop a command parser which can be modified
for use in subsequent problems.

Description: A program is to be written which will accept
commands of the form:

COM Al A2 A3 AN
where COM is the command and
A1,...AN are 0 or more arguments.
The command and each of the parameters are separated
by one or more blanks. A maximum of 10 arguments is
to be allowed.

The program must:
1) read a line
2) extract the command
3) accept a proper number (10 max) of arguments
4) check for improper arguments
5) perform the action required by the command.

For this problem, the following commands are to be
used:

START
STOP
ENGINE
TRACK
SWITCH
REVERSE
PANIC

The actions to be performed on each command are as
follows:

start: No other commands are to be recognized until
after a start command has been issued. The
command is echoed. No arguments.

panic: Ignore all other commands until the next
start command. No arguments.

stop: Terminate program execution. No arguments.

engine: Print the sum of the arguments.

track: Print the mean value of the arguments.

switch: Convert the arguments to floating point
and print the product.

462

-2-

reverse: Treat the argument as a character string
and print it out in reverse order.

Abbreviations consisting of a sufficient number
of the beginning characters of a command to distinguish
it from other commands are to be allowed. All commands
are to be echoed with the full command name. If argu-
ments appear on the START, STOP or PANIC commands, they
are to be ignored.

SAMPLE RUN

RUN tMTs^

EXECUTION BEGINS

?

7TRACK 12 3

7START

START

?E 4 5 6

ENGINE 4 5 6

SUM = 15

?S

ILLEGAL COMMAND

7TRACK 7 8 9

TRACK 7 8 9

MEAN = 8

?PAN

PANIC

?STOP

?STA

START

?RE ROSEBOWL

REVERSE ROSEBOWL

/* load program from MTS and start*/

/* program is waiting for a command*/

/* command ignored*/

/* command echoed*/

/* abbreviated engine command*/

/* illegal abbreviation*/

/* program message*/

/* track command*/

/* echo*/

/* command ignored*/

463

-3-

LWOBESOR

?SW 15 9

SWITCH 15 9

PRODUCT = 45.0

?STOP

STOP

EXECUTION TERMINATED

/* switch command*/

/* end of run*/

464

CICE 469

Experiment 3

Objective: To study the effect of two simple controllers in
controlling a two phase servo motor system.

1. PID controller

2. position plus velocity feedback controller

Description: A block diagram of the system is shown in Fig. 1

ommand input r(t)

1

1
|

I D/A

P(Z)
1

fit) 1
"7

LSI Servo
1

I • i - 1
! * *< -*

■ — — _ _ _ — J
J.

A/D

lOv

The output shaft of the servo is coupled to the wiper arm on
a potentiometer, which provides an output voltage proportional to
the shaft position. This voltage is fed to an A/D converter which
provides the input (8 bits) to the computer. Care must be taken
to handle wrap around problems. That is 9.9 volts represents an
angle only slightly different from that represented by 0.1 volts-
Timing is controlled by a programmable real time clock. A variable
interval is placed in a clock register. Thus, the basic period
of operation can be varied. Each interrupt should trigger the
beginning of a new sample period.

The approximate Z-transfer function for the D/A and servo
system is

P(Z) = K aT(Z-e"
aT) - (l-e"aT) (Z-l)

a2(Z-l) (Z-e"aT)

where
K = gain

1/a = time constant

T =, sample period

For this problem K and a are unknown

465

-2-

Implementation: There are several general considerations to be
incorporated in your control program:

1. Allow the input value to be set asynchronously from the
console.

2. Allow the control parameters to be entered before beginning
system operation.

3. Allow selection of control algorithm.

4. Keep sampled values in a circular buffer.

5. Consider D/A problems.

a) 8 bit overflow

b) offset

6. Handle wrap around problems.

7. Consider unit conversion.

8. Keep input, output and error history for subsequent printout,
e.g. Keep 100 samples after each change in input value.

9. Use zero initial past histories.

10. Design your algorithm to insert a delay of iT seconds in
the control where i is an integer in the range [0, 5].

11. Use scaling on K , T Td, Ti, Tv , and u.

PID Controller: The general form of the equation is

T /(
TiV'

.lf,T! Kc{e[kT] +|.e[0] +e[T] ^ ^e[(k-l)T] + e [kT]

_ e[kT] - e[(k-l)TK
^d m

/• T

This may be written in a form more convenient for implementation as:

K T K T,
u[kT] = u[(k-l)T] + {Kc + £- + -2^-^eEkT]

- {K + 2KcTd - KcT}e[(k-l)T]
T 2T.

i

+ Kc Td e[(k-2)T]
T

where
e[IcT] = r[kT] - y[kT] k = 0,1,2,...

Velocity feedback controller: The form of this controller is:

u[kT] = Kc{e[KT] - Tv(y
[kT] - y[(k-1)T])}

466

-3-

Your system is to be command driven and accept at a minimum

the following commands (though the commands are shown with an

equal sign, this may be omitted if desired):

T=<value> sets the sample period expressed in ms.

sets the gain K-.. If

is used it enters 10K,

KC=<value> sets the gain K . If integer arithmetic

TD=<value> sets the derivative coefficient, expressed

in ms.

TI=<value> sets the integral coefficient, expressed

in ms.

TV=<value> sets the velocity feedback coefficient,

expressed in ms.

PID put the controller in PTD mode

VF put the controller in velocity feedback

mode.

PR N print the first N entries of the

history table. If N is omitted, print

the entire table.

DELAY=<value> integer value sets the number of periods

of time delay.

467

- 4 -

Prograiranable clock:

The prograimnable clock is basically a 32 bit down counter.
When a 0 to -1 transition is made the done bit (07) in the CSR
is set. If the interrupt enable bit (06) is set, an interrupt
will be generated. The done bit is cleared automatically whenever
something is written into the upper word of the interval clock.

The addresses are:

CSR: 177020
lower bits: 177022
high order bits: 177024

Experimental runs:

1. Proportional control. Set T. = <» and T, = 0 in the FID

controller. Vary K and T and observe and record the

system performance (rise time, overshoot, steady state

error). Try to find values of K and T for reasonable c
performance.

2. Proportional plus derivative control. Set T. = °° in the

FID controller and use the "best" value of T found in 1.

Repeat 1 varying K and T,.

3. Velocity feedback controller: Use the sample period of

2 and repeat 1 for varying K and T .

4. FID control. Repeat 1 for the full FID controller

5. Effect of delay. For any one of the previous controllers

insert delays of T, 2T, 3T, 4T and 5T and observe the effect
on the response.

Report;

1. Summarize the results of your experimental runs.

2. Endeavor to explain your results in terms of the control

theory discussed in class. Try to explain discrepancies

with the theory.

3. Include a listing of your program and appropriate code

documentation.

468

CICE 469 PROJECT 2
DATA ACQUISITION

PART It COMMAND PARSING

1.1 Purpose

The purpose of part one of this experiment is to further
familiarize the student with the LSI-11, the CRASH compiler and
the OSWIT operating system by developing a command parser which
can be modified for use in part two-of this experiment and for
subsequent problems.

1.2 Problem Description

A program is to be written which will accept user input
commands of the form

<COMMAND>[<ARGUMENT>][<ARGUMENT> ,,,]
where

<COMMAND>
<ARGUMENT>

is the command
is an optional character or numeric
value to be supplied with the command

The command and each of the arguments are separated by one
or more blanks, A maximum of 10 arguments is to be allowed.

For both parts of this problem you will be asked to accept
the same set of input commands. Note that the action taken in
response to a particular command will be completely different
for parts one and two of this problem. The following commands
are to be implemented:

START
STOP
DSN text-string
FILE file-name
INTERVAL value
NPTS value
DUMP

The actions to be performed and required arguments for each
command are as follows:
START No other commands are to be recognized until

START command has been issued. The command is
No arguments,

STOP Terminate program execution. The command is echoed. No
arguments,

DSN The argument consists of a character str
arbitrary length. Embedded blanks are to be
The command is echoed, followed by the
string on the next output line,

FILE The argument consists of a string of

after a
echoed.

:ing of
allowed,
:haracter

nonblank

469

INTERVAL

NPTS

DUMP

characters. An argument exceeding ten character
error. Any number of blanks may follow the stri
any nonblank character encountered thereafter
error. The command is echoed followed by the ch
string enclosed in quotes on one line.
The argument consists of a single integer v
character form. The command is echoed. Conve
argument to integer and print the result.
The argument consists of a single integer v
character form. The command is echoed. Conve
argument to floating point and print the result
Ignore all other commands until the next
command. The command is echoed. No arguments.

s is an
ng, but
is an

aracter

alue in
rt the

alue in
rt the

START

Abbreviations consisting of a sufficient number of the
beginning characters of a command to distinguish it from other
commands are to be allowed. All commands are to be echoed with
the full command name for part one, but this is neither required
nor desired for part two. if arguments appear on commands which
do not require them, you may either ignore them or print a
warning. Null lines or lines consisting solely of blanks should
be ignored without comment.

1.3 Sample Execution

The following sample terminal session should be used as a
guide when designing your program.

.RUN *MTS*

.EXECUTION BEGINS.
?DUMP
7START
START
?
?DSN sample text string
DSN
sample text string
?FILE DATA1
FILE "DATAl"
?INT 56
INTERVAL

56
?NPTS 32767
NPTS
32767

?DUMP
DUMP
?STOP
?STA
START
?STOP
.EXECUTION TERMINATED.

Begin program execution.

(START not yet given)
User input.
Program output.
(Ignore null lines)
User input.
Program output.
Program output.
User input.
Program output.
Abbreviated user input.
Output; note full spelling,
Program output.
User input.
Program output.
Program output.
User input.
Program output.
(START must now be given)
User input.
Program output.
User wants to quit.
So we let him.

470

PART 2: INTRODUCTION TO DATA ACQUISITION

2.1 Purpose

The purpose of part two of this experiment is to introduce
some of the problems which arise in the use of computers for on
line data acquisition, and to introduce the use of frequency
analysis of signals. Some of the questions which arise are:
(l)how does one measure the variables in question; (2) how are
the values obtained transformed into numbers in the computer;
(3) how is the timing of the samples managed; (4) how do you
manage volumes of data greater than the main memory size of the
computer; (5) and how fast should one sample?

2.2 Problem Description

The issues raised above will be studied in the context of a
measurement of respiration rate. The measurement is based on the
temperature of the air immediately in front of a subject's nose
or mouth. As one breathes out, the temperature is raised, and as
one breathes in the temperature drops, A temperature sensitive
resistor, called a thermistor, is mounted in a tube through
which the subject breathes. When the thermistor is connected in
a simple electrical circuit, the voltage across the resistor R
will vary as the temperature of the thermistor varies (as the
subject breathes), This voltage is then passed through an
operational amplifier to adjust the voltage to a range suitable
for input to an analog to digital converter. The output of the
analog to digital converter may be sampled at any time by the
digital computer.

2.2.1 Fast Fourier Transform

Most real time signals are actually composed of an infinite
number if infinitesimal sinusoidal signals. The Fourier
Transform is the mathematical mechanism which allows the
relative amounts of these sinusoids to be determined. In its
continuous form, it involves an integration over an infinite
time interval, while in its discrete form, it requires a
summation over an infinite number of data points. The Fast
Fourier Transform is a computationally efficient approximation
to the discrete transform which uses only a finite number of
points. The efficiency of the computation is dependent upon the
number of data points in a very interesting manner. If the
number of data points is a power of 2 (512, 1024, 2148, etc) the
computation is roughly two and a half times faster than for a
nearby number which is not a power of two. Fortunately, library
routines exist on MTS to perform the computation.

Let T be the sample period, and let

f(0),f(T),f(2T),...,f((n-l)T)

PART 2: INTRODUCTION TO DATA ACQUISITION

471

be the data points taken. Then the FFT algorithm produces the
points

F(0),F(wO),F(2wO),..,,F((n-l)wO)

in the frequency spectrum corresponding to f(t) where

wO = 2 /(n-l)T .

These points in the frequency domain are complex. For our
purposes, however, only the magnitude is of interest, and we
will be working with real numbers. That is, if

F(w) = A + jB

at some frequency w, we will only be interested in the magnitude

/A
2
+ B

2
.

A program will be provided which will take the data samples,
perform the FFT calculation, and plot the results. The frequency
at which the peak magnitude occurs corresponds to the
respiration rate.

2.3 Procedure

For this part of the experiment, you are to modify your
command parser as written for the first part to process the
required commands in view of the data acquisition procedure.
Your problem is to write a suitable program to control the
sampling operation and place the sampled data in a file on the
floppy disk. The data will then be transmitted, in binary
format, to MTS. The discrete Fourier transform of the time
samples will then be taken and the respiration rate determined
from the peak frequency seen on the frequency spectrum.

2,3,1 Operating Instructions

The controls for the temperature sensor are located in the
small box attached to the sensor. The button on that box must be
depressed for data to be passed to the A/D converter. If the
button is not depressed, then a value of zero is sent to the
converter.

Before beginning operation, depress the button and adjust
the offset so that breathing through the tube produces a minimal
reading of 40 on A/D converter display. Then, when ready to take
a set of data samples, type the appropriate command on the
terminal, depress the button, and begin breathing through the
tube.

PART 2: INTRODUCTION TO DATA ACQUISITION
472

2.3.2 Data Sampling Program

Your data sampling program is to be command driven and is
to accept at least the following set of commands:

DSN text string

START

STOP

INTERVAL value

NPTS value ,

FILE filename

DUMP

The output to your data file is to consist of multiple sets of
data. Each data set is to begin with a single line of character
data describing the subject, e.g., name, date, time. This line
is to be followed by an arbitrary number of data lines
containing the samples. The last line in a data set is a trailer
record of the form shown below which includes as data the size
of the sampling period uses, expressed in milliseconds. The text
string on the DSN command is the data to be placed on the
character header for the next data set.

The START command is used to start the taking of a set of
data. The data sampling is to begin five seconds after the
command is entered and is to continue until either the number of
points specified in the most recently issued NPTS command is
reached, or until a zero sample value occurs, whichever occurs
first. This latter condition will occur if the button on the
sensor control box is released (which would result in
subsequent data values all being zero). The five second delay is
to allow time for the user to depress the control button and
begin breathing through the tube before the sampling begins.

The STOP command is to terminate execution of the program.

The INTERVAL command is used to set the sample frequency.
The integer value associated with the command is to contain the
sample period expressed in milliseconds. If this command is not
entered, a default value of 100 milliseconds is to be assumed.
If the command is entered without a parameter, a command error
has occured.

The NPTS command is used to set the number of data points
to be taken. The value associated with it contains an integer
number of points. If the command is omitted, a default value of
1024 is to be used. If the command is issued without a value, a

PART 2: INTRODUCTION TO DATA ACQUISITION
473

command error has occurred.

The FILE command is used to open a file on the floppy for
storing respiration data. Design your program so a new data file
can be attached without having to rerun your program. If the
file cannot be opened an appropriate error message is to be
produced.

The DUMP command is used to list the binary contents of the
currently opened file on the terminal. Since the respiration
data is written as binary bytes,.a simple $COPY of the file
contents under OSWIT will produce illegible gibberish. Your
program is to read each line of the data file, convert to
character, and print the data for inspection.

The data sets outputted to the disk file are each to have
the following format: -■

line # contents of line

1 - header in character form
2 - data line, format as follows:

byte #1 = # of data points on line
byte #2 ■ first data point

byte #n = n'th data point

more data lines

m - m'th data line
m+l - 3 byte trailer record of the form:

Ott
where tt= 2 byte time in msec.

m+2 - next data set's header if there
is another data set following

.
more data sets

Notes:
1) All lines may be longer than necessary with

any extra characters ignored.
2) No line can be less than 2 characters in length

(MTS/FFT,0 restriction)
3) No line can exceed 235 characters

(OSWIT/MCP restriction)
4) All data points are in binary format

PART 2: INTRODUCTION TO DATA ACQUISITION
474

(and thus the file should be copied
to MTS using the BIN modifier)

The output data file is to contain an arbitrary number of
data sets.

2.3.3 FFT Analysis

Copy the data file your have obtained to an MTS file. Then
use the FFT.PLOT program to perform the frequency analysis of
your data. This is invoked by the following MTS command:

$RUN 3ANB:FFT.O SCARDS=DATA.FILE [SPRINT=FREQ.FILE
PAR=FILE=PRINT]

DATA.FILE is the file containing your data. The optional
FREQ.FILE is an output file which will contain a tabular listing
of the magnitudes calculated for the frequencies.

This program should be run online in the computer graphics
laboratory with one of the graphics terminals. Since your data
files will contain several data sets, the program will pause
after plotting eaach of the plots. It will continue after your
have hit the return key on the terminal. You should normally
make a copy of your plots on the hard copy device before
continuing.

Obtain a hardcopy of your data plots and hand them in with your
documentation,

2.3.4 Discussion

1. Try to determine the respiration rate directly from a
strip chart recording.

2. Compare the results obtained from different breathing
experiments.

3. What sources of error do you see in the procedures
used? What can you suggest to reduce them?

4. What limitations exist on trying to sample extremely
fast for this type of data?

5. The _ operating system has performed a number of
critical tasks for you during this experiment.
Identify them and discuss briefly their importance.

PART 2: INTRODUCTION TO DATA ACQUISITION

475

2.4 Sanitation

In order to provide sanitary use of the breathing tubes, a
disinfectant solution will be kept in the laboratory. After each
person has used the tube, it is to be immersed in this solution.
The next user is to remove the tube and rinse it thoroughly with
cold water before using.

PART 2: INTRODUCTION TO DATA ACQUISITION
476

ECE 469

Laboratory Experiment 4

Introduction

'itis primary objective of this experirtent is to provide experience in

in dealing with multiple asynchronous interrupts. The setting for this will

be computer control of the model train in the laboratory. You may select one of

two versions of the problem:

1) control a single engine on the train board.

2) simultaneous independent control of multiple engines.

The latter carries 10% extra credit for the lab. To be eligible to try variation

2) you must receive the permission of your lab instructor, i.e. you must

convince him you have a realistic chance of finishing the project. The

rest of this write up will be framed as though you were doing variation 2).

The items which may be deleted for variation 1) should be obvious.

For each engine to be controlled, there is a throttle and switch. The

throttle determines the speed and direction of the engine it controls, and the

switch is used to determine the position of track switches the engine approaches.

Your system is to handle the setting of track speeds and track switch positions

accordingly, and to resolve all conflicts of trains approaching one another or

attempting to travel on the same track section at different speeds. In addition

to the track speed and track switch controller, two device sensors will be used:

photocell sensors to determine train position; and track throttle to determine

engine speed. Both of these latter sensors operate through the sane parallel

interface as the track controller.

Throttle Control

Each throttle controller is simply a potentiometer connected to a

10 volt source- As shown in Fig. 1, the output is connected to an A/V.

You are to treat the center position as zero, with one side being forward,

and the other reverse.

10 to CPU

477

-2-

Only 5 bits of the 8 in the converter are used. The possible range of

values is thus 0-31, which must be mapped into an allowable range of -20

to 20. A maximum of four throttles are allowed. Associated with each throttle

is a switch used to set whatever track switch the associated engine is

approaching.

The A/D converter associated with each throttle is free running.

The sensor logic monitors both current and past values from both the

switch and the throttle. As long as there is no change in either, no

action is taken. Whenever either the throttle or switch shows a change,

an interrupt through channel 3 is generated and the throttle value (0-31)

and switch position are placed on the input bus to the parallel interface.

The bit usage is shown in Fig. 2.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0
 '

T ^

switch
value

^v^

A/D
value

throttle
address

Photocell Sensor

Photocell sensors are placed around most switches as shown in Fig. 3.

The photo cells are adjusted so that normal ambient room light will turn

the photocells on. As a train passes over the photocells, they will turn

off. The use of the double photocells prevents false indication of end

of train caused by light between cars. Each pair has a unique address.

478

t
photocells

Figure 3.

Whenever one of the photocell pairs changes state (detects a train

either entering or leaving the area), an interrupt is generated

through the vector address associated with interrupt A on the parallel

interface. The photocell address and state are placed in the input buffer-

The bit utilizaticn is as shown in Fig. 4.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

0 0 0

T v^
state

1 = on

Figure 4.

——sy
photocell address

Track Control

Speed and direction control of an engine is achieved by POTting an

appropriate value to the output unit assigned to the train. The output

register is a 16 bit integer whose bits are assigned various functions

to effect train control as shown below:

15 14 13 12

Bank 0

11 10

.A-
track address

479

J
Speed

0 = stopped
31 = max

— direction

-4-

Bits 12-15 select a bank of 64 track sections. At present only bank 0 is

implemented. Bits 6-11 address one track in the selected bank. For each

track section there is a six bit buffer to hold the assigned direction and

speed.

When an integer is PUT to the unit assigned to the train, bits 0-5 are

placed in the buffer. Bits 0-4 are then sent to a 5 bit weighted resistor

D/A, and bit 5 controls a relay which determines the polarity applied to the

track. A 0 in the direction bit will cause an engine to move in the orienta-

tion shown by the arrows on the track layout diagram.

Assignment of the selected logical unit to *TRAIN* on the run canmand

will attach the train properly, e.g., 0=*TRAIN*.

Switch Control

Control of the track switches is acccmplished through the same unit as

the track control by using a different assignment of bits, as shown below:

JL-

Bank 15 Sub-bank Switch control
0 = straight
1 = turned

Bank 15 is used to indicate switch control rather than track control. Each

of the least significant 8 bits controls one switch in the assigned subbank.

Note that the switches are then always controlled in groups of 8. The

sub-bank assignments are:

sub-bank switches

0
1
2
3

0-7
8-15

16-23
24-31

Train Control

Your system must input and maintain a data structure describing the

track layout. In addition, it will be necessary to maintain certain in-

formation on each engine (e.g., current track, next switch position,

speed, direction, train position relative to various sensors). To initiate

control of a train, the user is to enter through the console the throttle

number and a track number upon which an engine has been placed. Initially,

the speed for that track is set to zero (regardless of throttle setting).

480

-5-

Any noveinent of the throttle or switch will then create an interrupt and

take dontrol of the train. In addition, there is to be a cancel carmand

which specifies a throttle number and results in removing the train

identified frcm the system.

An important aspect of this problem is the identification of, and

definition of decision rules for, various conflicts and situations which

can arise. Some of these are:

1. When entering a switch as shown in Fig. 5, the switch should

be set to avoid derailment.

Figure 7.

2. When entering a switch as shown in Fig. 6, the throttle

switch must be used to determine the trade switch position.

■>

Figure 8.

3. When to turn off track power.

4. Resolve collision conflicts.

5. Resolve speed conflicts on same track.

6. Whether or not and how to take into account stationary trains

no longer under throttle control (due to cancel).

7. Which track to power up next.

8. When to power up next track.

9. Provide automatic slow down for critical region of track, e.g.

where sharp turns or switches are used.

481

-6-

Program Extent

Multiple engine train control is potentially very extensive, possibly more than

can be completed in the term. You may state simplifying assumptions to limit

the scope of your program, but thsy should be clearly stated and justi-

fication given.

Single engine controls should include at a minimum:

1. Control on all tracks.

2. Control with long trains.

3. Speed limiting to avoid overloading engines.

4. All maneuvers which can be performed on the tracks controlled.

5. Power applied only to track on which the engine resides and,

temporarily, to adjacent tracks which may be partially occupied

by the train.

482

483

102

APPENDIX G: BIBLIOGRAPHY

Chuvala, R., P. Beck, "Mechanical Train Analog - A purposed
Software Evaluation Tool," ARO Rpt No. 78-3, 1978.

Ho, S. B., "A Systematic Approach to the Development and
Validation of Software for Critical Applications," Ph.D.
Dissertation, University of California, 1977.

Stavely, A., "Proving Programs Correct Using Abstract High
Level Logic," Ph.D. Dissertation, University of Michigan,
1977.

Huang, J. C, "Error Detection Through Program Testing," in
Current Trends in Programming Methodology (Vol. II), R. T.
Yeh, ed., Englewood Cliffs, NJ, Prentice-Hall, 1977.

Goodenough, J. B. and Gerhart, S. L., "Toward a Theory of
Test Data Selection," IEEE Transitions on Software
Engineering, June 1975,

Rose, C. W., "LOGOS and the Software Engineer," AFIPS FJCC,
1972.

Burger, R. T., "AUTAS/M: A System for Computerized Assembly
of Simulation Models," SIGPLAN Notices, Janury 1974.

REFERENCES

484

103

INDEX

A/D And D/A Conversion Facilities 27
A/D And D/A Converters 11
Analog Computers 37
Arithmetic And Logical Operations 49
Circuits For Hardware 99
Compiler Generated Calls 88
Computer Controlled Train 3
Concept Of Operation 90
Conclusion 66
Control Constructs 50
Control Flow 80
Control System 33
Course Objectives And Material 58
CRASH - Compiler For Real Time Applications SHop
 4 3

CRASH Summary 57
CRASH Users Manual 97
Crossover 21
Curricular Problems 65
Data Acquisition System 38
Data And Process Flow 90
Data Structures 25
Data Types And Structures 45
Description Of Software Support Facilities
 39

Detailed Course Outline 459
Discussion 93
Distributed Sensor Problems 1
Do Loops 80
Facilities Problems 64
Go To 8 3
If...Then...Else 8 2
Implementation Considerations 92
Independent Study Projects 60
Instructional Application Of Facility
 58

Instructor1^ View (SLB) 63
Interrupts 34
Interrupts And Special Processing Conditions
 54

Introduction 1,39 ,43
I/O And Interrupt Structure 42
I/O Statements 55
Laboratory Development 6
Laboratory Project Statements 462^
Limitations 89
Logical Interface 11,13,15-16
Logical View Of Facilities 11
Loop Control 21
Modeling Distributed Sensor Systems

INDEX

485

104

 94
MTS - OSWIT Communications 41
Multiple Train Considerations ...,'.....' 24
Operations 84
Organization Of Report 5
OSWIT Command Language 40
OSWIT File System And Utility Programs
 40

OSWIT Manual g7

OSWIT - Operating System With Trains
 39

OSWIT Support Functions 41
Other Facilities 37
Overview Of Facilities 6
Overview Of Hardware 8
Overview Of Operating Environment 7
Overview Of Software 10
Photocell Interrupt 18
Photocell Operation 30
Photocell Sensors 14
Physical Description Of Hardware Facilities
 27

Possible Areas Of Train Utility 78
Potential Logical Relations Between Programs And A Train System
 79

Potential Program Train Coupling 86
Predefined Functions And Subroutines
 57

Procedure Calls 83
Procedures 44
Program To Train Coupling 79
Project 1. String Reverser 58
Project 2. Data Acquisition 59
Project 3. Servo Controller 59
Project 4. Electric Train Control 59
Reaction To Use Of Facility 62
Real Time Computer Applications Laboratory
 4

Real Time Operations 41
References 484
Run-time Variable Checking 48
Sensor System 28
Sensor System Analog 2
Sequential Code Block 80
Servo Systems 37
Simple Track Junction 18
Software Control Of Multiple Trains
 17

Software Engineering 76
Software Simulation 87
Software Validation 76
Speculation On Other Applications 76
Standard Projects 58

INDEX
486

105

Storage Allocation 48
Student"s View 67
Switch Control 16
Switch Controller 35
Switch Control—Variation 2 20
Switch Entrance—Variation 1 19
Task i ng 4 2
Tasking And Timing 52
Textbook Problem 66
Throttle Interrupt 17
Throttle Sensor 28
Throttle Sensors 12
Track Control 14
Track Speed Controller 33
Train Facilities 12,28
Train Layout 456
Train Primitive 86
Use Of Facility 58
User Inserted Calls 88
View 1 - - Jack Wenstrand 67
View 2 - - Richard Jungclas 71

•

487

•
DISTRIBUTION LIST

Metals and Ceramics Information Center
ATTN: Mr. Harold Mindlin, Director

Mr. James Lynch, Asst Director
505 King Avenue
Columbus, OH 43201

Commander
Defense Technical Information

Center (12)
Cameron Station
Alexandria, VA 22314

Commander
U.S. Army Foreign Science and

Technology Center
ATTN: DRXST-SD3
220 Seventh Street NE
Charlottesville, VA 22901

Office of the Deputy Chief of Staff
for Research, Development, and
Acquisition

ATTN: DAMA-ARZ-E
DAMA-CSS

Washington, DC 20310

Commander
Army Research Office
ATTN: Dr. George Mayer

Mr. J. J. Murray
P.O. Box 12211
Research Triangle Park, NC 27709

Commander
U.S. Army Materiel Development and

Readiness Command
ATTN: DRCQA-E

DRCQA-P
DRCDE-D
DRCDMD-FT
DRCLDC
DRCMT
DRCMM-M

Alexandria, VA 22333

489

Commander
U.S. Army Electronics R&D Command
ATTN: DRSEL-PA-E, Mr. Stan Alster

Mr. Jack Quinn
Fort Monmouth, NJ 07703

Commander
U.S. Army Missile Research and

Development Command
ATTN: DRDMI-TB, Redstone Scientific

Information Center (2)
DRDMI-TK, Mr. J. Alley
DRDMI-M
DRDMI-ET, Mr. R. 0. Black
DRDMI-QS, Mr. G. L. Stewart, Jr.
DRDMI-EAT, Mr. R. Talley
DRDMI-QP

Redstone Arsenal, AL 35809

Commander
U.S. Army Troop Support and Aviation

Materiel Readiness Command
ATTN: DRSTS-PLE(2), Mr. J. Corwin

DRSTS-Q
DRSTS-M

4300 Goodfellow Boulevard
St. Louis, MO 63120

Commander
U.S. Army Natick Research and

Development Command
ATTN: DRDNA-EN •
Natick, MA 01760

Commander
U.S. Army Mobility Equipment Research

and Development Command
ATTN: DRDME-D

DRDME-E
DRDME-G
DRDME-H
DRDME-M
DRDME-T
DRDME-TQ
DRDME-V
DRDME-ZE
DRDME-N

Fort Belvoir, VA 22060

490
•

•
Commander
U.S. Array Tank-Autoraotive Materiel

Readiness Command (2)
ATTN: DRSTA-Q
Warren MI 48090

Commander
U.S. Army Armament Materiel

Readiness Command
ATTN: DRSAR-QA (2)

DRSAR-SC
DRSAR-RDP
DRSAR-EN
DRSAR-QAE

Rock Island, IL 61299

Commander
U.S. Army Armament Research and

Development Command
ATTN: DRDAR-LC, Mr. E. Kelly

DRDAR-LCA, Dr. Sharkoff
DRDAR-LCE, Dr.
DRDAR-QAS, Mr.
DRDAR-SCM, Dr.
DRDAR-TSP, Mr.
DRDAR-LCU-SM, Mr
DRDAR-LCU-SE, Mr
DRDAR-DP-TD, Mr. Reiter
DRDAR-DP-CP, Mr. Chase
DRDAR-TSS (5)

Dover, NJ 07801

Walker
F. Fitzsimmons

Corrie
Stephans
A. Strano
R. Gutter

(5)
J.
B.

Commander
Edgewood Arsenal
ATTN: DRDAR-CLR, Mr. Montanary

DRDAR-QAC, Dr. Maurits
Aberdeen Proving Ground, MD 21010

Commander
Watervliet Arsenal
ATTN: DRDAR-LCB, Mr. T. Moraczewski
Watervliet, NY 12189

•

491

m
Commander
U.S. Army Aviation R&D Command
ATTN: DRDAV-EXT

DRDAV-QR
DRDAV-QP
DRDAV-QE

St. Louis, MO 63166

Commander
U.S. Army Tank-Automotive Research

and Development Command
ATTN: DRDTA-RKA, Mr. D. Matichuk

DRDTA-RKA, Mr. R. Dunec
DRDTA-RKA, Mr. S. Catalano
DRDTA-JA, Mr. C. Kedzior
DRDTA-UL, Technical Library

Warren, MI 48090

Director
U.S. Army Industrial Base

Engineering Activity
ATTN: DRXIB-MT, Dr. W. T. Yang
Rock Island, IL 61299

Commander
Harry Diamond Laboratories
ATTN: DELHD-EDE, Mr. B. F. Willis
280 Powder Mill Road
Adelphi, MD 20783

Commander
U.S. Army Test and Evaluation Command
ATTN: DRSTE-TD

DRSTE-ME
Aberdeen Proving Ground, MD 21005

Commander
U.S. Army White Sands Missile Range
ATTN: STEWS-AD-L

STEWS-ID
STEWS-TD-PM

White Sands Missile Range, NM 88002

Commander
U.S. Army Yuma Proving Ground
ATTN: Technical Library
Yuma, AR 85364

492 •

Commander
U.S. Army Tropic Test Center
ATTN: STETC-TD, Drawer 942
Fort Clayton, Canal Zone

Commander
Aberdeen Proving Ground
ATTN: STEAP-MT

STEAP-TL
STEAP-MT-M, Mr. J. A. Feroli
STEAP-MT-G, Mr. R. L. Huddleston

Aberdeen Proving Ground, MD 21005

Commander
U.S. Army Cold Region Test Center
ATTN: STECR-OP-PM
APO Seattle, Washington 98733

Commander
U.S. Army Dugway Proving Ground
ATTN: STEDP-MT
Dugway, UT 84022

Commander
U.S. Army Electronic Proving Ground
ATTN: STEEP-MT
Ft. Huachuca, AZ 85613

Commander
Jefferson Proving Ground
ATTN: STEJP-TD-I
Madison, IN 47250

Commander
U.S. Army Aircraft Development

Test Activity
ATTN: STEBG-TD
Ft. Rucker, AL 36362

President
U.S. Army Armor and Engineer Board
ATTN: ATZKOAE-TA
Ft. Knox, KY 40121

President
U.S. Army Field Artillery Board
ATTN: ATZR-BDOP
Ft. Sill, OK 73503

493

Commander
Anniston Army Depot
ATTN: SDSAN-QA
Anniston, AL 36202

Commander
Corpus Christi Army Depot
ATTN:SDSCC-MEE, Mr. Haggerty
Mail Stop 55
Corpus Christi, TX 78419

Commander
Letterkenny Army Depot
ATTN: SDSLE-QA
Chambersburg, PA 17201

Commander
Lexington-Bluegrass Army Depot
ATTN: SDSRR-QA
Lexington, KY 405a07

Commander
New Cumberland Army Depot
ATTN: SDSNC-QA
New Cumberland, PA 17070

Commander
U.S. Army Depot Activity, Pueblo
ATTN: SDSTE-PU-Q (2)
Pueblo, CO 81001

Commander
Red River Army Depot
ATTN: SDSRR-QA
Texarkana, TX 75501

Commander
Sacramento Array Depot
ATTN: SDSSA-QA
Sacramento, CA 95813

Commander
Savanna Army Depot Activity
ATTN: SDSSV-S
Savanna, IL 61074

494

Commander
Seneca Army Depot
ATTN: SDSSE-R
Romulus, NY 14541

Commander
Sharpe Army Depot
ATTN: SDSSH-QE
Lathrop, CA 95330

Commander
Sierra Army Depot
ATTN: SDSSI-DQA
Herlong, CA 96113

Commander
Tobyhanna Army Depot
ATTN: SDSTO-Q
Tobyhanna, PA 18466

Commander
Tooele Army Depot
ATTN: SDSTE-QA
Tooele, UT 84074

Director
DARCOM Ammunition Center
ATTN: SARAC-DE
Savanna, XL 61074

Naval Research Laboratory
ATTN: Dr. J. M. Krafft, Code 8430

Library, Code 2620
Washington, DC 20375

Air Force Materials Laboratory
ATTN: AFML-DO, Library

AFML-LTM, Mr. E. Wheeler
AFML-LLP, Mr. R. Rowand

Wright-Patterson AFB, OH 45433

495

0
Director
Army Materials and Mechanics

Research Center
ATTN: DRXMR-P

DRXMR-PL (2)
DRXMR-M (2)
DRXMR-MQ
DRXMR-MI, Mr. Darcy
DRXMR-L, Dr. Chait
DRXMR-RA, Mr. Valente
DRXMR-AG-MD
DRXMR-X
DRXMR-PR

Watertown, MA 02172

Weapon System Concept Team/CSL
ATTN: DRDAR-ACW
Aberdeen Proving Ground, MD 21010

Technical Library
ATTN: DRDAR-CLJ-L
Aberdeen Proving Ground, MD 21010

Director
U.S. Army Ballistic Research Laboratory
ARRADCOM
ATTN: DRDAR-TSB-S
Aberdeen Proving Ground, MD 21005

Benet Weapons Laboratory
Technical Library
ATTN: DRDAR-LCB-TL
Watervliet, NY 12189

Commander
U.S. Army Armament Materiel

Readiness Command
ATTN: DRSAR-LEP-L
Rock Island, IL 61299

Director
U.S. Army TRADOC Systems Analysis

Activity
ATTN: ATAA-SL (Technical Library)
White Sands Missile Range, NM 88002

496

U.S. Array Materiel Systems
Analysis Activity

ATTN: DRSXY-MP
Aberdeen Proving Ground, MD 21005

497

